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A few Notes

Circle Economy advocates a new economic approach. It requires building of programs and tools
to help accelerate the scalable adoption of the circular economy across businesses,
governments and communities. This has imposed development and implementation of relevant
European policies and tools to answer this challenge. Thus, “European Area of Skills and
Qualifications” intends to further strengthen the links between business, education/training,
mobility and the labor market. In this respect Europe’s economic development is becoming
increasingly dependent on SMEs. To answer the needs related to the transparency and
recognition of skills and qualifications of SMEs personnel became a crucial importance.
Furthermore, these companies (SMEs) lack many of the support networks that are taken for
granted by larger companies. For example, each small Biotech company relies on Bioinformatics
for its research, and effective bioinformatics tools are often key part of business strategy. Yet
many SMEs have only a single member of staff responsible for this important aspect of their
business. On this basis the engagement of staff in education and training in order to update and
upgrade their skills within the continuous or life-long learning approach is a key issue. In order
to achieve this, the small businesses need to engage relevant training providers or VET
professionals.
Taking into account all above the main goal of BIOTECH-GO project is focused on the provision
of innovation in skills improvement for VET professionals in the fields of Bioinformatics, thus
assuring new ways of talent development for small and medium-sized enterprises (SMEs)
employees. Project contributes to the advance of a European Area of Skills and Qualifications
through creating specific VET tools in the subject area (EQF/NQF, ECVET). Knowledge, skills,
responsibility & autonomy update of VET specialists working in the project subject area will
further promote excellence, and will raise awareness of the fundamental concepts underlying
bioinformatics in different biotech companies, such as:
- contribution to the advancement of biology research in Biotech SMEs through

bioinformatics tools application;

provision of advanced bioinformatics training to SMEs personnel at all levels, from

technicians to independent investigators;

helping for dissemination of cutting-edge technologies to industry;

coordination of biological data provision across Europe.
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Biology in the Computer Age

Bioinformatics is the science combining utilization of computer and biological data. It's the
instrument we can use to understand biological processes and to answer of numerous others questions.
Entirely, bioinformatics is a subset of the bigger field of computational science, the use of quantitative
scientific strategies in modelling biological systems. The field of bioinformatics depends vigorously on
work by specialists with statistical methods and pattern recognition. Scientists come to bioinformatics
from many fields, including arithmetic, software engineering, and semantics. Unfortunately, biology is
a study of the particular and in addition the general. Bioinformatics is full of pitfalls for the individuals
who search for examples and make expectations without an entire comprehension of where biological
data originates from and what it implies. By giving calculations, databases, Uls, and measurable devices,
bioinformatics makes it conceivable to do things like compare DNA sequences and generate results that
are potentially significant. Possibly critical” is maybe the most essential expression. “These new
approaches additionally give the chance to overinterpret information and assign meaning where none
truly exists”. We can't exaggerate the significance of understanding the restrictions of these tools. In any
case, once you gain that understanding and turn into smart user of bioinformatics strategies, the speed
at which your research advances can be genuinely astonishing.

Bioinformatics deals with any type of data that is of interest to biologists

. DNA and protein sequences

. Gene expression ( )

. Articles from the literature and databases of citations

. Images

. Raw data collected from any type of field or laboratory experiment
. Software
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How Informatics Change Biology?

Biological genetic and functional data are stored as DNA, RNA, and proteins, which are all linear
chains composed of smaller molecules. These macromolecules are composed from a defined alphabet
of well-studied chemicals: DNA is comprised of four deoxyribonucleotides (adenine, thymine, cytosine,
and guanine), RNA is made up from the four ribonucleotides (adenine, uracil, cytosine, and guanine),
and proteins are built using the 20 amino acids. Since these macromolecules are straight chains of
characterized parts, they can be represented as sequences of symbols. These sequences can then be
compared to find similarities that suggest the molecules are related by form or function. Sequences
examination is conceivably the most valuable computational tool to emerge for molecular biologists.
The World Wide Web has made it possible for a single public database of genome sequence data to give
benefits through a uniform interface to an overall group of users. With an ordinarily utilized PC program
called fSBLAST, molecular biologists can compare an uncharacterized DNA with the all openly
available DNA sequence collections.

Bioinformatics and Databases Building

A lot of what we currently consider as a major aspect of bioinformatics— sequence comparison,
sequence database searching, sequence analysis —is more complicated than simply outlining and setting
public databases. Bioinformaticians (or computational scientists) go beyond simply downloading,
managing, and introducing information, drawing motivation from a wide variety of quantitative fields,
including statistics, physics, material science, software engineering. Figure 1 indicates how quantitative
science intersects with biology at each level, from investigation of sequence information and
macromolecules structure, to metabolic modelling, to quantitative study of populations and ecology.

Experimental Computation
Information technology

Hardware & Instrumentation Mathematical & Physical models

Methodology & Expertise
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Figure 1. How technology intersects with biology

Bioinformatics is above all else a part of the biological sciences. The principle objective of
bioinformatics isn't building up the most sophisticated algorithms or the most hidden analysis; the
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objective is discovering how living organism function. Like the molecular biology science strategies
that extraordinarily extended what researcher were fit for examining, bioinformatics is an approach and
not an end in itself. Bioinformaticians are the tool- developers, and it's important that they comprehend
natural issues and computational arrangements so as to create valuable instruments. Research in
bioinformatics and computational science can incorporate abstraction of the properties of a biological
system into a mathematical or physical model, to execution of new calculations for information
investigation, to the improvement of databases and web tools to assess them.

Informatics and Biologists

The science of informatics is focused on the representation, organization, manipulation,
distribution, maintenance, and use of data, especially in computerized frame. The functional part of
bioinformatics is the representation, storage, and distribution of data. Smart outline of information
configurations and databases, formation of instruments to search in those databases, and advancement
of Uls that unite diverse apparatuses to enable the user to make complex inquiries about the information
are generally parts of the improvement of bioinformatics foundation.

Creating analytical tools to find information in information is the second, and more logical, part
of bioinformatics. There are many levels at which we utilize biological data, regardless of whether we
are comparing sequences to build up a theory about the function of a newfound gene, examining known
3D protein structures to discover patterns that can help foresee how the protein folds, or displaying how
proteins and metabolites in a cell cooperate to make the cell function. A ultimate objective of analytical
bioinformaticians is to create prescient techniques that enable researchers to display the function and
phenotype of a living organisms based only on its genome sequence.

Bioinformatician Skills?

There's an extensive variety of points that are helpful in case you're interested in bioinformatics,
and it's not possible to learn them all. However, the following "core requirements” for bioinformaticians
could be underlined:

v' Have a genuinely profound background in some part of molecular biology, like:

biochemistry, molecular biology, molecular biophysics, or even molecular modelling.

v Completely comprehend the “central dogma” of molecular biology. Understanding how and

why DNA sequence is transcribed into RNA and then translated into protein.

v Have significant experience with at least one or two major molecular biology software
packages, either for sequence analysis or molecular modelling. The experience of learning
one of these softwares makes it substantially much esier to figure out how to utilize other
available programmes.

Be open to work in command-line computing environment.
Have experience with programming in a computer language, for example, ,aswell as
in a scripting language, for example, or

AN

Biologists and Computers

Computers are powerful devices for study any system that can be described in a mathematical
way. As our comprehension of biological processes has developed and extended, it isn't amazing, at that
point, that computational biology and bioinformatics, have advanced from the intersection of traditional
biology, mathematics, and computer science.

The expanding automation of experimental molecular biology and the use of increasing data in
the biological sciences have prompt a major change in the way biological research is performed.
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Notwithstanding narrative research — finding and studying in detail a single gene at a time — we are
presently classifying all the information that is accessible, making complete maps to which we to can
later return and mark the points of interest. This is occurring in the domains of sequence and structure,
and has started to be the way to deal with different sorts of information also. The trend is toward storage
of row biological information in numerous public databases with open access. Rather than doing
preparatory research in the lab, investigators are going to the databases initially to save time and assets.

Web Information Use

While you can rapidly locate a single protein structure file or DNA sequence file by filling in a
web form and looking through a public database, it's reasonable that in the end you will want to work
with more than one bit of information. You may gathering and archiving your own particular
information; as well as you might need to make newly discovered information accessible to a broader
research community. To do these things effectively, you have to store information on your own PC. In
the event that you need to process your data utilizing a computer program, you have to structure your
information. Understanding the contrast amongst organized and unstructured information and outlining
an information arrange that suits your data storage and access needs is the way to making your
information valuable and accessible.

There are numerous approaches to sort out information. While most biological data is stored in
flat file databases, this sort of database becomes inefficient when the quantity of data being stored
becomes extremely large. More information regarding differences between flat file and relational
databases, introduce the best public -domain tools for managing databases, and show you how to use
them to store and access your data you could find in GM2 (Advance level).

Understanding Sequence Alignment Data

It's difficult to comprehend your data, or make a point, without visualization tools. The extraction
of cross sections or subsets of complex multivariate data is regularly required to understand biological
information. Once you've stored data in an open, flexible format, the next stage is to extract what is
essential to you and visualize it. You have to make a histogram of your information or show a molecular
structure in three dimensions and watch it move in real time using a specific visualization instruments.

Predicting Protein Structure from Sequence

There are a few questions that Bioinformatics can't answer, and this is one of them. Indeed, it's
one of the greatest open research inquiries in computational science. What is conceivable is to give the
instruments to discover data about such issues and different authors who are working on them.
Bioinformatics, similar to some other science, doesn't generally give fast and simple responses to all
issues.

Questions That Bioinformatics Can Answer

The questions that drive bioinformatics development are similar that people have at in applied
biology for the last couple of hundred years. How might we cure disease? How might we prevent
infection? How might we produce enough food to sustain all of mankind? Organizations working in the
field of drugs development, agricultural chemicals, hybrid plants, plastics and other petroleum
derivatives, and biological approaches to environmental remediation, among others, are creating
bioinformatics divisions and looking to bioinformatics to give new targets and to help replace scarce
natural resources.
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The presence of genome projects infers our goal to utilize the information they create. The
important objectives of modern molecular biology are to read the entire genomes of living organisms,
to identify each gene, to match every gene with the protein it encodes, and to determine the structure
and function of each protein. Detailed knowledge of gene sequence, protein structure and function, and
gene expression patterns is expected to enable us to see how life functions at the most noteworthy
conceivable resolution. In this way the ability to manipulate living organisms will be performed with
exactness and precision.

Computational Approaches to Biological Questions

There is a standard range of approaches that are applied in bioinformatics. Currently, the greater
part of the important methods depends on one key principle: that sequence and structural homology (or
similarity) between molecules can be utilized to define basic and functional similarity. Here, an outline
for the standard computer tools accessible to researcher is given; in GM2 how specific software packages
implement these strategies is examined and how a researcher should utilize them.

Molecular Biology's Central Dogma

The central dogma of molecular biology states that:
v" DNA is a template to replicate itself,
v" DNA is transcribed into RNA, and
v" RNA is translated into protein.

In brief, genomic DNA contains all the necessary information about functioning of a define living
organism. Without DNA, organisms wouldn't be able to replicate themselves. The raw "one-
dimensional™ sequence of DNA, however, doesn't actually do anything biochemically; it's only store
information, a blueprint that is read by the cell's protein synthesizing machinery. DNA sequences are
the punch cards; cells are the computers.

Replication of DNA

The specific structure of DNA molecules assures its special properties. These properties allow
the information stored in DNA to be preserved and transferred from one cell to another, and thus from
parents to their offspring.

Template DNA

sla 1 [t Jc Je Je [c [t [a [a |¥

3 [c [e [a [T |1 |¥

DNA {&———————=1 Direction of new DNA synthesis
polymerase

Figure 2. Schematic replication of DNA helix
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Genomes and Genes

The genome comprises individual genes. There are three classes of genes: protein-coding genes,
RNA-specifying genes are untranscribed genes.

Transcription of DNA
DNA act as a blueprint for a synthesis of ribonucleic acid (RNA).

Template DNA

5/

a |t |1 Jc Je Je Jc |1 |a |a | ¥

3 ¢ |6 |[A |u |u |¥

RNA {&——————=1 Direction of new RNA synthesis

polymerase

Figure 3. Schematic transcription of DNA into RNA

Translation of mRNA

Translation of mMRNA into protein is the final key step in putting the information in the genome
to work in the cell.
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Figure 4. The genetic code

Molecular Evolution

Errors in replication and transcription of DNA are relatively common. If these errors occur in in
dividing cells, they can be passed to its offspring. Modifications in the DNA sequence can have harmful
effect, they can also have beneficial, or they can be neutral. If a mutation doesn't kill the organism before
it reproduces, the mutation can become fixed in the population over many generations. The slow
accumulation of such mutations is the background of the evolution. Thus, knowing the DNA sequences
provide us with more precise understanding of evolution. Knowing the molecular mechanism of
evolution as a gradual process of accumulating DNA sequence mutations is the reason for creating
theories based on DNA and protein sequence comparison.

Biological Models

One of the most important exercises in biology and bioinformatics is modeling. A model is an
abstract way of describing a complicated system. Turning something as complex (and confusing) as a
chromosome, or the cycle of cell division, into a simplified representation that captures all the features
you are trying to study can be extremely difficult. A model helps us see the larger picture. One feature
of a good model is that it makes systems that are otherwise difficult to study easier to analyze using
guantitative approaches. Bioinformatics tools rely on our ability to extract relevant parameters from a
biological system (be it a single molecule or something as complicated as a cell), describe them
quantitatively, and then develop computational methods that use those parameters to compute the
properties of a system or predict its behavior.
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Accessing 3D Molecules Through a 1D Representation

In reality, DNA and proteins are complicated 3D molecules, composed of thousands or even
millions of atoms bonded together. However, DNA and proteins are both polymers, chains of repeating
monomers. Not too long after the chemical natures of DNA and proteins were understood, researchers
recognized that it was convenient to represent them by strings of single letters. Instead of representing
each nucleic acid in a DNA sequence as a detailed chemical entity, they could be represented simply as
A, T, C, and G. Thus, a short piece of DNA that contains thousands of individual atoms can be
represented by a sequence of few hundred letters.

Not only does this abstraction save storage space and provide a convenient form for sharing
sequence information, it represents the nature of a molecule uniquely and correctly and ignores levels
of detail (such as atomic structure of DNA and many proteins) that are experimentally inaccessible.
Many computational biology methods exploit this 1D abstraction of 3D biological macromolecules.

The abstraction of nucleic acid and protein sequences into 1D strings has been one of the most
fruitful modeling strategies in computational molecular biology, and analysis of character strings is a
longstanding area of research in computer science. One of the elementary questions you can ask about
strings is, "Do they match?" There are well-established algorithms in computer science for finding exact
and inexact matches in pairs of strings. These algorithms are applied to find pairwise matches between
biological sequences and to search sequence databases using a sequence query.

In addition to matching individual sequences, string-based methods from computer science have
been successfully applied to a number of other problems in molecular biology. For example, algorithms
for reconstructing a string from a set of shorter substrings can assemble DNA sequences from
overlapping sequence fragments. Techniques for recognizing repeated patterns in single sequences or
conserved patterns across multiple sequences allow researchers to identify signatures associated with
biological structures or functions. Finally, multiple sequence-alignment techniques allow the
simultaneous comparison of several molecules that can infer evolutionary relationships between
sequences.

This simplifying abstraction of DNA and protein sequence seems to ignore a lot of biology. The
cellular context in which biomolecules exist is completely ignored, as are their interactions with other
molecules and their molecular structure. And yet it has been shown over and over that matches between
biological sequences can be biologically meaningful.

Abstractions for Modeling Protein Structure

There is more to biology than sequences. Proteins and nucleic acids also have complex 3D
structures that provide clues to their functions in the living organism. Structure analysis can be
performed on static structures, or movements and interactions in the molecules can be studied with
molecular simulation methods.

Standard molecular simulation approaches model proteins as a collection of point masses (atoms)
connected by bonds. The bond between two atoms has a standard length, derived from experimental
chemistry, and an associated applied force that constrains the bond at that length. The angle between
three adjacent atoms has a standard value and an applied force that constrains the bond angle around
that value. The same is true of the dihedral angle described by four adjacent atoms. In a molecular
dynamics simulation, energy is added to the molecular system by simulated "heating.” Following
standard Newtonian laws, the atoms in the molecule move. The energy added to the system provides an
opposing force that moves atoms in the molecule out of their standard conformations. The actions and
reactions of hundreds of atoms in a molecular system can be simulated using this abstraction.

In any case, the computational requests for molecular simulations are huge, and there is some
weakness both in the force field - the accumulation of standard forces that model the molecule — and
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in the displaying of nonbonded interactions - interactions between nonadjacent atoms. In this way, it has
not demonstrated conceivable to anticipate protein structure utilizing the all-atom modeling approach.

A few researchers have recently moderate success in predicting protein topology for small
proteins utilizing a moderate level of abstraction — more than linear sequence, but less than an all atom
model. For this situation, the protein is dealt with as a progression of globules (speaking to the individual
amino acids) on a string (speaking to the backbone). Globules may have distinctive characters to
represent the distinctions in the amino acids sidechains. They might be positively or negatively charged,
polar or nonpolar, small or large. There are rules overseeing which globules will attract each other. Polar
groups cluster with other polar groups, and nonpolar with nonpolar. There are also rules concerning the
the string; essentially that it can't go through itself throughout the course of simulation. Modeling the
protein folding itself is directed through sequential or simultaneous perturbations of the position of each
globule.

Mathematical Modeling of Biochemical Systems

Using theoretical models in biology goes far beyond the single molecule level. For years,
ecologists have been using mathematical models to help them understand the dynamics of changes in
interdependent populations. What effect does a decrease in the population of a predator species have on
the population of its prey? What effect do changes in the environment have on population? The answers
to those questions are theoretically predictable, given an appropriate mathematical model and a
knowledge of the sizes of populations and their standard rates of change due to various factors.

In molecular biology, a similar approach, called metabolic control analysis, is applied to
biochemical reactions that involve many molecules and chemical species. While cells contain hundreds
or thousands of interacting proteins, small molecules, and ions, it's possible to create a model that
describes and predicts a small corner of that complicated metabolism. For instance, if you are interested
in the biological processes that maintain different concentrations of hydrogen ions on either side of the
mitochondrial inner membrane in eukaryotic cells, it's probably not necessary for your model to include
the distant group of metabolic pathways that are closely involved in biosynthesis of the heme structure.

Metabolic models depict a biochemical process in respect to the concentrations of chemical
substances engaged with a pathway, and the reactions and fluxes that influence those concentrations.
Reactions and fluxes can be identified by differential equations; they are basically rates of change in
concentration.

What makes metabolic modeling intriguing is the possibility of displaying many reactions at the
same time to perceive what impact they have on the concentration of specific chemical compound.
Utilizing a properly built metabolic model, you can test diverse presumptions about cell conditions and
fine-tune the model to simulate experimental trials. That, in turn, can propose testable speculations to
drive further research.

Bioinformatics Approaches

Molecular biology research is a fast-growing area. The amount and type of data that can be
gathered is exploding, and the trend of storing this data in public databases is spilling over from genome
sequence to all sorts of other biological datatypes. The information landscape for biologists is changing
so rapidly that often more of the provided information is somewhat behind the times.

Yet, since the inception of the , a core set of computational approaches
has emerged for dealing with the types of data that are currently shared in public databases—DNA,
protein sequence, and protein structure. Although databases containing results from new high-
throughput molecular biology methods have not yet grown to the extent the sequence databases have,
standard methods for analyzing these data have begun to emerge.
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The following list gives an overview of the key computational methods:

Using public databases and data formats

The first key skill for biologists is to learn to use online search tools to find information.
Literature searching is no longer a matter of looking up references in a printed index. You can find links
to most of the scientific publications you need online. There are central databases that collect reference
information, so you can search dozens of journals at once. You can even set up "agents” that notify you
when new articles are published in an area of interest. Searching the public molecular-biology databases
requires the same skills as searching for literature references: you need to know how to construct a query
statement that will pluck the particular needle you're looking for out of the database haystack.

Sequence alignment and sequence searching

Having the capacity to analyze pairs of DNA or protein sequences and extract partial matches
has made it conceivable to utilize a biological sequence as a database query. Sequence-based searching
is another key expertise for biologists; a little investigation of the biological databases toward the start
of a scientific project often saves a lot of valuable time in the lab. Recognizing homologous sequences
gives a basis to phylogenetic examination and sequence pattern recognition. Sequence-based searching
should be possible online through web platforms, so it requires no extraordinary computer skills, yet to
judge the quality of your search results or you have to understand how the sequence-alignment method
functions and how to go beyond different kinds of further investigations.

Gene prediction

Gene prediction is just one of a bunch of techniques for recognition of meaningful signals in
uncharacterized DNA sequences. Up to this point, most sequences deposit in were already
characterized at the time of deposition. That is, somebody had officially gone in and, utilizing molecular
biology, genetic, or biochemical approaches, made sense of what the gene did. Nonetheless, now that
the genome projects are going all out, a lot of DNA sequence out there that isn't characterized.

Programming for forecast of open reading frames, genes, exon splice sites, promoter binding
sites, repeat sequences, and tRNA genes enables researchers to make sense out of this unmapped DNA.

Multiple sequence alignment

Multiple sequence-alignment techniques assemble pairwise sequence alignment for some related
sequences into a image of sequence homology among all individuals from a gene family. Multiple
sequence alignments help in visual distinguishing of sites in a DNA or protein sequence that might be
functionally important. Such sites are normally conserved; the same amino acid is present at that site in
each one of a group of related sequences. Multiple sequence alignments can also be quantitatively
examined to obtain data about certain gene family. This technique is a basic advance in phylogenetic
investigation of a group of related sequences, and they additionally provide the basis for identifying
sequence patterns that describe specific protein families.

Phylogenetic analysis

Phylogenetic analysis endeavors to depict the evolutionary relatedness of a group of sequences.
A traditional phylogenetic tree or cladogram groups species into a diagram presenting their relative
evolutionary similarity / divergence. Branching of the tree that occur uttermost from the root isolate
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individual species; branching that that occur close to the root assembly species into kingdoms, phyla,
classes, families, genera, et cetera.

The information in a molecular sequence alignment can be used to compute a phylogenetic tree
for a particular family of gene sequences. The branching in phylogenetic trees represent evolutionary
distance based on sequence similarity scores or on information-theoretic modeling of the number of
mutational steps required to change one sequence into the other. Phylogenetic analyses of protein
sequence families talk not about the evolution of the entire organism but about evolutionary change in
specific coding regions, although our ability to create broader evolutionary models based on molecular
information will expand as the genome projects provide more data to work with.

Extraction of patterns and profiles from sequence data

A motif is a sequence of amino acids that defines a substructure in a protein that can be connected
to function or to structural stability. In a group of evolutionarily related gene sequences, motifs appear
as conserved sites. Sites in a gene sequence tend to be conserved—to remain the same in all or most
representatives of a sequence family—when there is selection pressure against copies of the gene that
have mutations at that site. Nonessential parts of the gene sequence will diverge from each other in the
course of evolution, so the conserved motif regions show up as a signal in a sea of mutational noise.
Sequence profiles are statistical descriptions of these motif signals; profiles can help identify distantly
related proteins by picking out a motif signal even in a sequence that has diverged radically from other
members of the same family.

Protein sequence analysis

The amino-acid content of a protein sequence can be used as the basis for many analyses, from
computing the isoelectric point and molecular weight of the protein and the characteristic peptide mass
fingerprints that will form when it's digested with a particular protease, to predicting secondary structure
features and post-translational modification sites.

Protein structure prediction

It's a lot harder to determine the structure of a protein experimentally than it is to obtain DNA
sequence data. One very active area of bioinformatics and computational biology research is the
development of methods for predicting protein structure from protein sequence. Methods such as
secondary structure prediction and threading can help determine how a protein might fold, classifying it
with other proteins that have similar topology, but they don't provide a detailed structural model. The
most effective and practical method for protein structure prediction is homology modeling—using a
known structure as a template to model a structure with a similar sequence. In the absence of homology,
there is no way to predict a complete 3D structure for a protein.

Protein structure property analysis

Protein structures have numerous quantifiable properties that are important to crystallographers
and structural biologists. Protein structure validation devices are utilized by crystallographers to measure
how well a structure model fits in with auxiliary standards extricated from existing structures or chemical
model compounds. These instruments may also examine the "fitness" of each amino acid in a structure
model for its environment, hailing such peculiarities as hidden charges with no countercharge or large
patches of hydrophobic amino acids found on a protein surface. These tools are valuable for assessing
both experimental and hypothetical structure models.
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Another class of methods can figure inner geometry and physicochemical properties of proteins.
These instruments generally are used to create models of the protein's catalytic mechanism or other
chemical features. Probably the most fascinating properties of protein structures are the locations of
deeply concave surface clefts and internal cavities, both of which may point to the area of a cofactor
binding site or active site. Different tools register hydrogen-bonding patterns or investigate
intramolecular interactions. An especially intriguing properties are the electrostatic potential field
encompassing the protein and other electrostatically controlled parameters, for example, individual
amino acid pKa, protein solvation energies, and binding constants.

Protein structure alignment and comparison

Notwithstanding when two gene sequences aren't obviously homologous, the structures of the
proteins they encode can be similar. New instruments for computing structural similarity are making it
conceivable to recognize distant homologies by comparing structures, even without much sequence
similarity. These tools also are helpful for comparing developed homology models with the known
protein structures they are based on.

Biochemical simulation

Biochemical simulation utilizes the instruments of dynamical systems modeling to mimic the
chemical reactions involved in metabolism. Simulations can reach out from individual metabolic
pathways to transmembrane transport process and even properties of entire cells or tissues. Biochemical
and cell simulations generally depended on the capacity of the researcher to describe a system
mathematically, building up an arrangement of differential conditions that represent the different
reactions and fluxes occurring in the system. In any case, new software tools can develop the
mathematical framework of a simulation automatically from a description given interactively by the
user. This make mathematical modeling accessible to any biologist who knows enough about a system
to describe it according to the conventions of dynamical systems modeling.

Whole genome analysis

As more and more genomes are sequenced completely, the analysis of raw genome data has
become a more important task. There are a number of perspectives from which one can look at genome
data: for example, it can be treated as a long linear sequence, but it's often more useful to integrate DNA
sequence information with existing genetic and physical map data. This allows you to navigate a very
large genome and find what you want. (NCBI) and
other organizations are making a concerted effort to provide useful web interfaces to genome data, so
that users can start from a high-level map and navigate to the location of a specific gene sequence.

Genome navigation is far from the only issue in genomic sequence analysis, however.
Annotation frameworks, which integrate genome sequence with results of gene finding analysis and
sequence homology information, are becoming more common, and the challenge of making and
analyzing complete pairwise comparisons between genomes is beginning to be addressed.

Primer design

Many molecular biology protocols require the design of oligonucleotide primers. Proper primer
design is critical for the success of polymerase chain reaction (PCR), oligo hybridization, DNA
sequencing, and microarray experiments. Primers must hybridize with the target DNA to provide a clear
answer to the question being asked, but, they must also have appropriate physicochemical properties;
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they must not self-hybridize or dimerize; and they should not have multiple targets within the sequence
under investigation. There are several web-based services that allow users to submit a DNA sequence
and automatically detect appropriate primers, or to compute the properties of a desired primer DNA
sequence.

DNA microarray analysis

DNA microarray analysis is a relatively new molecular biology method that expands on classic
probe hybridization methods to provide access to thousands of genes at once. Microarray experiments
are amenable to computational analysis because of the uniform, standardized nature of their results—a
grid of equally sized spots, each identifiable with a particular DNA sequence. Computational tools are
required to analyze larger microarrays because the resulting images are so visually complex that
comparison by hand is no longer feasible.

The main tasks in microarray analysis as it's currently done are an image analysis step, in which
individual spots on the array image are identified and signal intensity is quantitated, and a clustering
step, in which spots with similar signal intensities are identified. Computational support is also required
for the chip -design phase of a microarray experiment to identify appropriate oligonucleotide probe
sequences for a particular set of genes and to maintain a record of the identity of each spot in a grid that
may contain thousands of individual experiments.

Proteomics analysis

Before they're at any point crystallized and biochemically characterized, proteins are frequently
analysid utilizing a combination of gel electrophoresis, partial sequencing, and mass spectroscopy. 2D
gel electrophoresis can separate a mixture of thousands of proteins into particular segments; the
individual spots of material can be blotted or even cut from the gel and examined. Simple computational
instruments can give some data to help in the process of analyzing the protein mixtures. It's easier to
calculate the molecular weight and pl from a protein sequence; by utilizing these values, sets of putative
candidate identities can be identified for each spot on a gel. It's also conceivable to compute, from a
protein sequence, the peptide fingerprint that is made when that protein is broken down into fragments
by enzymes with specific protein cleavage sites. Mass spectrometry investigations of protein fragments
can be compared with processed peptide fingerprints to further limit the search.

The Public Biological Databases

The nomenclature problem in biology at the molecular level is immense. Genes are commonly
known by unsystematic names. These may come from developmental biology studies in model systems,
so that some genes have names like flightless, shaker, and antennapedia due to the developmental effects
they cause in a particular animal. Other names are chosen by cellular biologists and represent the
function of genes at a cellular level, like homeobox. Still other names are chosen by biochemists and
structural biologists and refer to a protein that was probably isolated and studied before the gene was
ever found.

Though proteins are direct products of genes, they are not always referred to by the same names
or codes as the genes that encode them. This kind of confusing nomenclature generally means that only
a scientist who works with a particular gene, gene product, or the biochemical process that it's a part of
can immediately recognize what the common name of the gene refers to. The biochemistry of a single
organism is a more complex set of information than the taxonomy of living species was at the time of
Linnaeus, so it isn't to be expected that a clear and comprehensive system of nomenclature will be arrived
at easily. There are many things to be known about a given gene: its source organism, its chromosomal
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location, and the location of the activator sequences and identities of the regulatory proteins that turn it
on and off. Genes also can be categorized by when during the organism'’s development they are turned
on, and in which tissues expression occurs. They can be categorized by the function of their product,
whether it's a structural protein, an enzyme, or a functional RNA. They can be categorized by the identity
of the metabolic pathway that their product is part of, and by the substrate it modifies or the product it
produces. They can be categorized by the structural architecture of their protein products. Clearly this is
a wealth of information to be condensed into a reasonable nomenclature. Figure 5 shows a portion of
the information that may be associated with a single gene.

Phylogenetic Metabolic Connectors to
inference profiles other maps
Sequence homologs Cofactors & Metabolic
in other genomes metabolites map locator
Sequence
Functional Experimental
. —
chemistry data
Genome
location / \
Expression Structure
info / / \
Raw Numerical  Cluster Raw Electron  Structure SS
images values genes data density  annotation assignments

Figure 5. Information associated with a single gene

The issue for maintainers of biological databases turns out to be mostly one of annotation; that
is, putting adequate data into the database that there is no doubt of what the gene is, regardless of whether
it has a cryptic common name, and making the best possible links between that data and the gene
sequence and serial number. Correct annotation of genomic data is a dynamic research area itself, as
scientists attempt to discover approaches to exchange data crosswise over genomes without spreading
error. Storage of macromolecular information in electronic databases has offered ascend to a method for
working around the issue of classification. The solution has been to give each new entry into the database
a serial number and afterward to store it in a relational database that knows the correct linkages between
that serial number, any number of names for the gene or gene product it encodes, and all manner of other
information about the gene. This technique is the the one currently in use in the major biological
databases.

The questions databases resolve are essentially the same questions that arise in developing a
nomenclature. However, by using relational databases and complex querying strategies, they (perhaps
somewhat unfortunately) avoid the issue of finding a concise way for scientists to communicate the
identities of genes on a nondigital level.

Data Annotation and Data Formats

The representation and distribution of biological data is still an open problem in bioinformatics.
The nucleotide sequences of DNA and RNA and the amino acid sequences of proteins reduce neatly to
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character strings in which a single letter represents a single nucleotide or amino acid. The remaining
challenges in representing sequence data are verification of the correctness of the data, thorough
annotation of data, and handling of data that comes in ever-larger chunks, such as the sequences of
chromosomes and whole genomes.

The standard reduced representation of the 3D structure of biomolecule consists of the Cartesian
coordinates of the atoms in the molecule. This aspect of representing the molecule is straightforward.
On the other hand, there are a host of complex issues for structure databases that are not completely
resolved. Annotation is still an issue for structural data, although the biology community has attempted
to form a consensus as to what annotation of a structure is currently required. In the last 15 years,
different researchers have developed their own styles and formats for reporting biological data.
Biological sequence and structure databases have developed in parallel in the United States and in
Europe. The use of proprietary software for data analysis has contributed a number of proprietary data
formats to the mix. While there are many specialized databases, we focus here on the fields in which an
effort is being made to maintain a comprehensive database of an entire class of data.

3D Molecular Structure Data

Though DNA sequence, protein sequence, and protein structure are in some sense just different
ways of representing the same gene product, these datatypes currently are maintained as separate
database projects and in unconnected data formats. This is mainly because sequence and structure
determination methods have separate histories of development.

The first public molecular biology database, set up about 10 years before the public DNA
sequence databases, was the (PDB). It represents the central repository for x-ray
crystal structures of protein molecules. While the first finish protein structure was presented in the 1950s,
there were not a noteworthy number of protein structures accessible until the late 1970s. Computers had
not created to the point where graphical representation of protein coordinate structure information was
possible, at least at useful speeds. However, in 1971, the PDB was set up at the Brookhaven National
Laboratory, to store protein structure information in a computer-based archive. A data format created,
which owed a lot of its style to the prerequisites of early computer technology. All through the 1980s,
the PDB grew. From 15 sets of entries in 1973, it augments to 69 entries in 1976. The number of
coordinate sets deposited each year remained under 100 until 1988, at which time there were still fewer
than 400 PDB entries.

In the vicinity of 1988 and 1992, the PDB hit the the turning point in its exponential growth
curve. By January 1994, there were 2,143 entries in the PDB; and at the moment the PDB has more than
14,000 entries. Administration of the PDB has been exchanged to a consortium of entry mark, called the
Research Collaboratory for Structural Bioinformatics, and and a new format for recording of
crystallographic data, the Macromolecular Crystallographic Information File (mmCIF), is being
introduced in to replace the antiquated PDB format. Journals that publish crystallographic results require
submission to the PDB as a condition of publication, which means that nearly all protein structure data
obtained by academic researchers becomes available in the PDB.

A typical issue for information driven investigations of protein structure is the excess and
absence of thoroughness of the PDB. There are numerous proteins for which various crystal structures
have been submitted to the database. Choosing subsets of the PDB information with which to work is in
this manner a critical step in any statistical investigation of protein structure. Numerous statistical studies
of protein structure depend on sets of protein chains that have close to 25% of their sequence in common;
if this paradigm is utilized, there are still just around 1,000 unique protein folds represented in the PDB.
As the amount of biological sequence data available has grown, the PDB now falls a long ways behind
the gene-sequence databases.
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DNA, RNA, and Protein Sequence Data

Sequence databases generally specialize in one type of sequence data: DNA, RNA, or protein.
There are major sequence data collections and deposition sites in Europe, Japan, and the United States,
and there are independent groups that mirror all the data collected in the major public databases, often
offering some software that adds value to the data.

In 1970, Ray Wu sequenced the first segment of DNA; twelve bases that occurred as a single
strand at the end of a circular DNA that was opened utilizing a cleaving enzyme. In any case, DNA
sequencing demonstrated considerably more troublesome than protein sequencing, on the grounds that
there is no chemical process that selectively cleaves the first nucleotide from a nucleic acid chain. At
the point when Robert Holley announced the sequencing of a 76-nucleotide RNA molecule from yeas,
it was following seven years of work. After Holley's sequence was published, different groups refined
the protocols for sequencing, even succeeding in sequence effectively a 3,200-base bacteriophage
genome. Genuine advance with DNA sequencing came after 1975, with the chemical cleavage method
created by Allan Maxam and Walter Gilbert, and with Frederick Sanger's chain terminator procedure.

The first DNA sequence database, established in 1979, was the Gene Sequence Database
(GSDB) at Los Alamos National Lab. While GSDB has since been supplanted by the worldwide
collaboration that is the modern GenBank, up-to-date gene sequence information is still available from
GSDB through the National Center for Genome Resources.

, the , and the

cooperate to make all freely accessible sequence data through GenBank. NCBI has
built up a standard relational database format for sequence information presentation and storage, known
as the ASN.1 format. While this format guarantees to locate the right sequences of the right kind in
GenBank simpler, there are also various services tions giving access to nonredundant versions of the
database. The DNA sequence database developed gradually through its first decade. In 1992, GenBank
contained just 78,000 DNA sequences — a little more than 100 million pairs of DNA. In 1995, the
Human Genome Project, and advances in sequencing innovation, kicked GenBank's growth into high
gear. GenBank currently doubles in size every 6 to 8 months, and its rate of increase is constantly
growing.

Genomic Data

In addition to the Human Genome Project, there are now separate genome project databases for
a large number of model organisms. The sequence content of the genome project databases is
represented in GenBank, but the genome project sites also provide everything from genome maps to
supplementary resources for researchers working on that organism. As of October 2000, NCBI's Entrez
Genome database contained the partial or complete genomes of over 900 species. Many of these are
viruses. The remainder include bacteria; archaea; yeast; commonly studied plant model systems such as
A. thaliana, rice, and maize; animal model systems such as C. elegans, fruit flies, mice, rats, and puffer
fish; as well as organelle genomes. NCBI's web-based software tools for accessing these databases are
constantly evolving and becoming more sophisticated.

Biochemical Pathway Data

The most vital biological activities don't occur by the action of single molecule, however as the
orchestrated activities of multiple molecules. Since the mid twentieth century, biochemists have
analyzed these functional ensembles of enzymes and their substrates. A couple of research groups have
started work at intelligently arranging and storing these pathways in databases. Key example of pathway
database is . The Kyoto Encyclopedia of Genes and Genomes (KEGG) stores comparative
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information about sequence, structure, and genetic linkage databases. This database is queryable through
web interfaces and are curated by a combination of automation and human expertise. In addition to these
whole genome "parts catalogs,” other, more specialized databases that focus on specific pathways (such
as intercellular signaling or degradation of chemical compounds by microbes) have been developed.

Gene Expression Data

DNA microarrays (or gene chips) are miniaturized laboratories for the study of gene expression.
Each chip contains a deliberately designed array of probe molecules that can bind specific pieces of
DNA or mRNA. Labeling the DNA or RNA with fluorescent molecules allows the level of expression
of any gene in a cellular preparation to be measured quantitatively. Microarrays also have other
applications in molecular biology, but their use in studying gene expression has opened up a new way
of measuring genome functions.

Since the advancement of DNA microarray technology in the late 1990s, it has turned out that
the increase in available gene expression data will eventually parallel the growth of the sequence and
structure databases. Raw microarray information has been started to be made accessible to the general
audience in particular databases, and the building up of a central data repository for such data is done

( :

Since a significant number of the early microarray experiments were performed at Stanford, their
genome resources site has connections to raw information and databases that can be queried utilizing
gene names or functional descriptions. Furthermore, the European Bioinformatics Institute has been
instrumental in setting up of standards for deposition of microarray data in databases. Several databases
additionally exist for the deposition of 2D gel electrophoresis results, including and

. 2D-PAGE is an innovation that permits quantitative investigation of protein
concentrations in the cell, for many proteins at the same time. The combination of these two systems is
an intense tool for understanding how genomes function.

Table 1 summarizes sources on the Web for some of the most important databases we've
discussed in this section.
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Table 1. Major Biological Data and Information Sources

Subject Source Link
Biomedical PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
literature
Nucleic acid | GenBank http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
sequence
SRS at | http://srs.ebi.ac.uk
EMBL/EBI
Genome Entrez Genome | http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Genome
sequence
TIGR http://www.tigr.org/tdb/
databases
Protein GenBank http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein
sequence
SWISS-PROT | http://www.expasy.ch/spro/
at ExPASy
PIR http://www-nbrf.georgetown.edu
Protein Protein  Data | http://www.rcsb.org/pdb/
structure Bank
Entrez http://prowl.rockefeller.edu
Structure DB
Protein and
peptide  mass
spectroscopy
PROWL
Post- RESID http://www-nbrf.georgetown.edu/pirwww/search/textresid.html
translational
modifications
Biochemical ENZYME http://www.expasy.ch/enzyme/
and
biophysical
information
BIND http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Structure
Biochemical PathDB http://www.ncgr.org/software/pathdb/
pathways
KEGG http://www.genome.ad.jp/kegg/
WIT http://wit.mcs.anl.gov/WIT2/
Microarray Gene http://industry.ebi.ac.uk/~alan/MicroArray/
Expression
Links
2D-PAGE SWISS- http://www.expasy.ch/ch2d/ch2d-top.html
2DPAGE
Web The EBI | http://www.ebi.ac.uk/biocat/
resources Biocatalog
IUBIo Archive | http://iubio.bio.indiana.edu
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Bioinformatics tools

There are several tools that study protein and DNA sequences, the most abundant type of biological
data available electronically. The importance of sequence databases is from crucial importance to biological
investigations and the pairwise sequence comparison is the most essential technique in bioinformatics. It
allows you to search sequence-based datasets, to build evolutionary trees, to recognize specific features of
protein families, to create homology models. But it's also the key for the development of larger projects,
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such as analyzing whole genomes, exploring the sequence determinants of protein structure, connecting
expression data to genomic information, etc.

The following types of analysis can be performed by using sequence data:

Single sequence analysis and sequence characterization
Pairwise alignment and DNA / protein sequence searching
Multiple sequence alignment

Sequence motif discovery in multiple alignments
Phylogenetic analysis

Pairwise sequence comparison is the main tool of connecting biological function with genome and

of transferring known

information from one genome to another. The techniques for analysis of biological

sequences is the most significant approaches for sequence data assessment. There are numerous freely
accessible software tools for performing pairwise sequence comparison. Some of them are summarized in

Table 1.

Table 1. Sequence Analysis Tools and Techniques

What you do Why you do it What you use to do it

Gene finding Identify  possible  coding | GENSCAN, GeneWise,
regions in genomic DNA | PROCRUSTES, GRAIL
sequences

DNA feature detection Locate splice sites, | CBS Prediction Server

promoters, and sequences
involved in regulation of gene
expression

translation

DNA translation and reverse | Convert a DNA sequence into | "Protein machine™ server at

protein sequence or vice versa | EBI

(local)

Pairwise sequence alignment | Locate short regions of | BLAST, FASTA

homology in a pair of longer
sequences

(global)

Pairwise sequence alignment | Find the best full-length | ALIGN

alignment  between  two
sequences

pairwise comparison

Sequence database search by | Find sequence matches that | BLAST, FASTA, SSEARCH

aren't recognized by a
keyword search; find only
matches that actually have
some sequence homology
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Mechanisms of Molecular Evolution

The discovery of DNA as the molecular basis of heredity and evolution made it possible to
understand the process of evolution in a whole new way. It is known that often mutations occur in different
parts of an organism's DNA: in the middle of genes that code for proteins or functional RNA molecules, in
the middle of regulatory sequences that govern whether a gene to be expressed or not, or in the "middle of
nowhere"”, in the regions between gene sequences. Mutations can have important effects on the organism's
phenotype or they can have no apparent consequence. Over time mutations that are beneficial or at least not
harmful to a species can become fixed in the population.

By comparative study of DNA sequences or of whole genomes, it's possible to develop quantitative
methods for understanding when and how mutational events occurred, as well as how and why they were
preserved to survive in existing species and populations. Genomics and bioinformatics have made it possible
to study the evolutionary record and make statements about the phylogenetic relationship of one species to
another. Changes in the identity of the residue (nucleotide or amino acid) at a given position in the sequence
are scored using standard substitution scores (for example, a positive score for a match and a negative score
for a mismatch) or substitution matrices. Insertions and deletions are scored with penalties for gap opening
and gap extension.

Genefinders and DNA Features Detection

Once a large piece of DNA has been mapped and sequenced, the next important task is to understand
its function. Analysis of single DNA for sequence features is a rapidly growing research area in
bioinformatics. There are two reasons that genefinding and feature detection represent difficult problems.
First, there are a huge number of protein-DNA interactions, many of which have not yet been experimentally
characterized, and some of which differ from organism to organism. Current promoter detection algorithms
yield about 20-40 false positives for each real promoter identified. Some proteins bind to specific sequences;
others are more flexible and recognize different attachment sites. To complicate matters further, a protein
can bind in one part of a chromosome but affect completely different region hundreds or thousands of base
pairs away.

Genefinders are programs that try to identify all the open reading frames in unannotated DNA. They
use a variety of approaches to locate genes, but the most successful combine content-based and pattern-
recognition approaches. Content-based tools for gene prediction take advantage of the fact that the
distribution of nucleotides in genes is different than in non-genes. Pattern-recognition methods look for
characteristic sequences associated with genes (start and stop codons, promoters, splice sites) to deduce the
presence and structure of a gene. In fact, the current generation of genefinders combine both methods with
additional knowledge, such as gene structure or sequences of other, known genes.

Some genefinders are accessible only though web interfaces: the sequence that needs to be examined
for genes is submitted to the program, it is processed, and the corresponding result is returned. On one hand,
this eliminates the need for installation and maintenance of the specific software on your system, and it
provides a relatively uniform interface for the different programs. On the other, if you plan to rely on the
results of a genefinder, you should take the time to understand underlying algorithm, find out if the model
is specific for a given species or family, and, in the case of content-based models, know which sequences
they are.

Some frequently used programs in gene finding include Oak Ridge National Labs' GRAIL,
GENSCAN, PROCRUSTES, and GeneWise. GRAIL combines evidence from a variety of signal and
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content information using a neural network. GENSCAN combines information about content statistics with
a probabilistic model of gene structure. PROCRUSTES and GeneWise find open reading frames by
translating the DNA sequence and comparing the resulting protein sequence with known protein sequences.
PROCRUSTES compares potential ORFs with close homologs, while GeneWise compares the gene against
a single sequence or a model of an entire protein family.

Feature Detection

In addition to their role in genefinder systems, feature-detection algorithms can be used on their own
to find patterns in DNA sequences. Frequently, these tools help interpret newly sequenced DNA or choose
targets for designing PCR primers or microarray oligomers. Some starting places for tools like these include
the , the

, and the

. In addition to these special-purpose tools, another popular approach is to use motif discovery

programs that automatically find common patterns in sequences.

DNA Translation

Before a protein can be synthesized, its sequence must be translated from the DNA into protein
sequence. However, any DNA sequence can be translated in six possible ways. The sequence can be
translated backward and forward. Because each amino acid in a protein is specified by three bases in the
DNA sequence, there are three possible translations of any DNA sequence in each direction: one beginning
with the very first character in the sequence, one beginning with the second character, and one beginning
with the third character.

Figure 1 shows "back-translation” of a protein sequence (shown on the top line) into DNA, using the
bacterial and plant plastid genetic code. However, note that nature has grouped the codons "sensibly™:
alanine (A) is always specified by a "G-C-X" codon, arginine (R) is specified either by a "C-G-X" codon or
an "A-G-pyrimidine™ codon, etc. This reduces the number of potential sequences that have to be checked if
you (for example) try to write a program to compare a protein sequence to a DNA sequence database.

The more computationally efficient solution to this problem is simply to translate the DNA sequence
database in all six reading frames.
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Figure 1. Back-translation from a protein sequence

There are no markers in the DNA sequence to indicate where one codon ends and the next one
begins. Consequently, unless the location of the start codon is known ahead of time, a double-stranded DNA
sequence can be interpreted in any of six ways: an open reading frame can start at nucleotide i, at i+1, or at
i+2 on either of both DNA strand. To interpret this uncertainty, when a protein is compared with a set of
DNA sequences, the DNA sequences are translated into all six possible amino acid sequences, and the
protein query sequence is compared with these resulting conceptual translations. This exhaustive translation
is called a "six-frame translation" and is illustrated in Figure 2.

m s KL GQ E KNEVNY S DV REDR F1
C RN WDI KIKIKMZEK*TITLM®*ERTIE F2
V EI 6T RIKI K ®* S KILL®*CKZRTG?®* S F3
1 ATGTCGAAATTGGGACAAGAAAAAAATGAAGTAAATTACTCTGATGTAAGAGAGGATAGA 60
B R e Bl Tl [ B [ el ISR R
1 TACAGCTTTAACCCTGTTCTTTTTTTACTTCATTTAATGAGACTACATTCTCTCCTATCT 60
XD FNPCSFFSTTF * ESTLS S L F6
X T s I PV L FFHLLMNSQH L L P Y E5
HRFQ $ L F FIFY I VRTIYS LI S Fa4

vV v T N s TGNPTIWMNEWPTFUVTQRTIG F1

L *Q TP LV IQ@SMMNUHLSZ®PMNUVILAG F2

C DKLHW®*=SNQ*TTICHZPTY WG F3

61 GTTGTGACARACTCCACTGGTAATCCAATCAATGAACCATTTGTCACCCAACGTATTGGEG 128
e el B e e R R e Bt o TR |

61 CAACACTGTTTGAGGTGACCATTAGGTTAGTTACTTGGTAAACAGTGGGTTGCATAACCC 120

T T VvV F EVPL GTI L SGNTVWRTITP F6

L QS LSW QYDL®*HVMOQZ®*GUV Y Q F5

M HCV G S TTIWDTIFWIEKUDGTULTMNP Fa4

Figure 2. A DNA sequence and its translation in three of six possible reading frames
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Because of the large number of codon possibilities for some amino acids, back-translation of a
protein into DNA sequence can result in an extremely large number of possible sequences. However, codon
usage statistics for different species are available and can be used to suggest the most likely backtranslation
out of the range of possibilities. However, if you need to produce a six-frame translation of a single DNA
sequence or translate a protein back into a set of possible DNA sequences, and you don't want to script it
yourself, the at the European Bioinformatics Institute (EBI) will do it for you.

Pairwise Sequence Comparison

Comparison of protein and DNA sequences is one of the fundamentals of bioinformatics. The ability
to perform rapid automated comparisons of sequences facilitates assignment of function to a new sequence,
prediction and construction of model protein structures, design and analysis of gene expression experiments.
As biological sequence data has accumulated, it has become apparent that nature is conservative. A new
biochemistry isn't created for each new species, and new functionality isn't created by the sudden appearance
of whole new genes. Instead, incremental modifications give rise to genetic diversity and novel function.
Thus, detection of similarity between sequences allows transferring of information about one sequence to
other similar sequences with reasonable, though not always total, confidence.

Before making a comparative conclusion about one nucleic acid or protein sequence, a sequence
alignment is required. The basic concept of selecting an optimal sequence alignment is simple. The two
sequences are matched up in an arbitrary way. The quality of the match is scored. Then one sequence is
moved with respect to the other and the match is scored again, until the best-scoring alignment is found.

What sounds simple in principle isn't at all simple in practice. So, using an automated method for
finding the optimal alignment is the most suitable approach. Next question is how should alignments be
scored? A scoring scheme can be as simple as +1 for a match and -1 for a mismatch. But, should gaps be
allowed to open in the sequences to facilitate better matches elsewhere? If gaps are allowed, how should
they be scored? What is the best algorithm for finding the optimal alignment of two sequences? And when
an alignment is produced, is it necessarily significant? Can an alignment of similar quality be produced for
two random sequences?

Figure 3 shows examples of three kinds of alignment. In each alignment, the sequences being
compared are displayed, one above the other, such that matching residues are aligned. Similarities are
indicated with plus (+). Information about the alignment is presented at the top, including percent identity
(the number of identical matches divided by the length of the alignment) and score. Finally, gaps in one
sequence relative to another are represented by dashes (-) for each position in that sequence occupied by a

gap.
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Scgore = 27.7 bits (60), Expeck = 2.1, Method: Composition-based stats.
Identities = 15/72 (20%), Positives = 34/72 (47%), Gaps = 15/72 (20%)
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Score = 69.7 bits (169), Expect = 2e-15, Method: Compositional matrix
adjust. Identities = 29/96 (30%), Positives = 60/96 (62%), Gaps = 2/96 (2%)
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A K ++B+PT + + EV ++ GA+ +A+ A+
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Figure 3. Three alignments: random, high scoring, and low scoring but meaningful

The first alignment is a random alignment, a comparison between two unrelated sequences. Notice
that, in addition to the few identities and conservative mutations between the two, large gaps have been
opened in both sequences to achieve this alignment. Second alignment is a high-scoring one: it shows a
comparison of two closely related proteins. Compare that alignment with the third, a comparison of two
distantly related proteins. It shows that fewer identical residues are shared by the sequences in the low-
scoring alignment than in the high-scoring one. Still, there are several similarities or conservative changes.

In describing sequence comparisons, several different terms are frequently used. Sequence identity,
sequence similarity, and sequence homology are the most important. Sequence similarity is meaningful only
when possible substitutions are scored according to the probability with which they occur. In protein
sequences, amino acids of similar chemical properties are found to substitute for each other much more
readily than dissimilar amino acids. Sequence homology is a more general term that indicates evolutionary
relatedness among sequences. It is common to speak of a percentage of sequence homology when comparing
two sequences, although that percentage may include a mixture of identical and similar sites. Finally,
sequence homology refers to the evolutionary relatedness between sequences. Two sequences are said to be
homologous if they are both derived from a common ancestral sequence. The terms similarity and homology
are often used interchangeably to describe sequences, but, however, they mean different things. Similarity
refers to the presence of identical and similar sites in the two sequences, while homology reflects a sharing
of a common ancestor.
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Scoring Matrices

The most important information when evaluating a sequence alignment is whether it is random, or
meaningful. If the alignment is meaningful, the question is how meaningful it is. This is assessed by
constructing a scoring matrix. A scoring matrix is a table of values that describe the probability of a residue
(amino acid or base) pair occurring in an alignment. The values in a scoring matrix are logarithms of ratios
of two probabilities. One is the probability of random occurrence of an amino acid in a sequence alignment.
This value is simply the product of the independent frequencies of occurrence of each of the amino acids.
The other is the probability of meaningful occurrence of a pair of residues in a sequence alignment. These
probabilities are derived from samples of actual sequence alignments that are known to be valid.

Figure 4 shows an example of a BLOSUM®62 substitution matrix for amino acids.

2 o D E F £ H I K I M N F Q R S T 1 Y
AR EEE R E e e I
|l 0 93 422 33 =1 B <l=1 333 31 4 123
pl-2 -3 6 2 3 -1 -1 -3 -1 -4-31+-1 02 01 -3 3
E | -l 2 543 2 043 L <842 0 sl 20 0 0 3 3 2
Fl2<2 33 6 31 03 0 034342413
G| 0.3 -1 2 3 6 2 4 2 4 322322 0102 3
H|2 %3 P 0%l @ 8 =8 4432 L =2 0 0% 0 2 =2 2
|l B8 8 043 43 2 183333 2 FI3 4
K|-1 3 -F 189 4.3 8§ 32.400 12 99033 2
L | <t el s <3 9 i =3 252 4 2 3 =3 9y il 3 32 al
M|l =1 B -2 B 88 1 <F 2 5 28 0 I = &1 22 <1 -
¥| 28 1 0.3 6133 03262 6@ 1 034 3
3 B T GRS TR G I T T P S (= (O B (S e S T g G |
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|1 B2 .32 0892 2.2 0.8 £ 5.4 4333
S| 141 0 02 @0 <1 @ 0 2 <1 F a1 0-F % 1 2 3 2

=1 1§ 0«2  0=2 02=1 @0 1 0 2 1 4 =28 2

B4 B33 321 1333323434
W3 @3 15223 324 49 P 33 AN 2
¥ |2 =3 @ <2 @ 3 2l @<l 28 Rl L B

Figure 4. The BLOSUM®62 substitution matrix for amino acids

Substitution matrices for amino acids are complicated because they reflect the chemical nature and
frequency of occurrence of the amino acids. For example, in the BLOSUM matrix, glutamic acid (E) has a
positive score for substitution with aspartic acid (D) and also with glutamine (Q). Both these substitutions
are chemically conservative. Aspartic acid has a sidechain that is chemically similar to glutamic acid, though
one methyl group shorter. On the other hand, glutamine is similar in size and chemistry to glutamic acid,
but it is neutral while glutamic acid is negatively charged. Substitution scores for glutamic acid with residues
such as isoleucine (1) and leucine (L) are negative

Substitution matrices for bases in DNA or RNA sequence are very simple. In most cases, it is
reasonable to assume that A:T and G:C occur in roughly equal proportions. Commonly used substitution
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matrices include the BLOSUM and PAM matrices. When using BLAST, you need to select a scoring matrix.
Most automated servers select a default matrix for you, and if you're just doing a quick sequence search, it's
fine to accept the default.

BLOSUM matrices are derived from the Blocks database. The numerical value (e.g., 62) associated
with a BLOSUM matrix represents the cutoff value for the clustering step. A value of 62 indicates that
sequences were put into the same cluster if they were more than 62% identical. By allowing more diverse
sequences to be included in each cluster, lower cutoff values represent longer evolutionary time scales, so
matrices with low cutoff values are appropriate for seeking more distant relationships. BLOSUMS6?2 is the
standard matrix for ungapped alignments, while BLOSUMS50 is more commonly used when generating
alignments with gaps.

Point accepted mutation (PAM) matrices are scaled according to a model of evolutionary distance
from alignments of closely related sequences. The most commonly used PAM matrix is PAM250. However,
comparison of results using PAM and BLOSUM matrices suggest that BLOSUM matrices are better at
detecting biologically significant similarities.

Gap Penalties

DNA sequences change not only by point mutation, but by insertion and deletion of residues as well.
Consequently, it is often necessary to introduce gaps into one or both of the sequences being aligned to
produce a meaningful alignment between them. Most algorithms use a gap penalty for the introduction of a
gap in the alignment. Most sequence alignment models use affine gap penalties, in which the rate of opening
a gap in a sequence is different from the rate of extending a gap that has already been started. Of these two
penalties—-the gap opening penalty and the gap extension penalty—-the gap opening penalties tend to be
much higher than the associated extension penalty. Scores of -11 for gap opening and -1 for gap extension
are commonly used in conjunction with the BLOSUM 62 matrix.

Global Alignment

One possibility is to align two sequences along their whole length. This algorithm is called the
Needleman-Wunsch algorithm. In this case, an optimal alignment is built up from high-scoring alignments
of subsequences, stepping through the matrix from top left to bottom right. Only the best-scoring path can
be traced through the matrix, resulting in an optimal alignment.

Local Alighment

The most commonly used sequence alignment tools rely on a strategy called local alignment. The
global alignment strategy assumes that the two sequences to be aligned are known and are to be aligned
over their full length. However, often a sequence is searched against a sequence database with unknown
sequences, or a short query sequence is used to match with a very long DNA sequence. For example, in
protein or gene sequences that do have some evolutionary relatedness, but which have diverged significantly
from each other, short homologous segments may be all the evidence of sequence homology that remains.
The algorithm that performs local alignment of two sequences is known as the Smith-Waterman algorithm.
A local alignment isn't required to extend from beginning to end of the two sequences being aligned. If the
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cumulative score up to some point in the sequence is negative, the alignment can be abandoned and a new
alignment started. The alignment can also end anywhere in the matrix.

Tools for local alignment

One of the most frequently reported implementations of the Smith-Waterman algorithm for database
searching is the program SSEARCH, which is part of the FASTA distribution. LALIGN, also part of the
FASTA package, is an implementation of the Smith-Waterman algorithm for aligning two sequences.

Sequence Queries Against Biological Databases

A common application of sequence alignment is searching a database for sequences that are similar
to a query sequence. In these searches, an alignment of a sequence hundreds or thousands of residues long
is matched against a database of at least tens of thousands of comparably sized sequences.

Local Alignment-Based Searching Using BLAST

By far, the most popular tool for searching sequence databases is a program called BLAST (Basic
Local Alignment Search Tool). It performs pairwise comparisons of sequences, seeking regions of local
similarity, rather than optimal global alignments between whole sequences. BLAST can perform hundreds
or even thousands of sequence comparisons in a matter of minutes. And in less than a few hours, a query
sequence can be compared to an entire database to find all similar sequences.

The BLAST algorithm

Local sequence alignment searching using a standard Smith-Waterman algorithm is a fairly slow
process. The BLAST algorithm, which speeds up local sequence alignment, has three basic steps. First, it
creates a list of all short sequences (called WORDS) that score above a threshold value when aligned with
the query sequence. Next, the sequence database is searched for occurrences of these words. Because the
word length is so short (3 residues for proteins, 11 residues for nucleic acids), it's possible to search a
precomputed table of all words and their positions in the sequences for improved speed. These matching
words are then extended into ungapped local alignments between the query sequence and the sequence from
the database. Extensions are continued until the score of the alignment drops below a threshold. The top-
scoring alignments in a sequence, or maximal-scoring segment pairs (MSPs), are combined where possible
into local alignments. The new additions to the BLAST software package also search for gapped alignments.

NCBI BLAST and WU-BLAST

There are two implementations of the BLAST algorithm: NCBI BLAST and WU-BLAST. Both can
be used as web services and as downloadable software packages. is available from the
National Center for Biotechnology Information (NCBI), while is developed and maintained at
Washington University. NCBI BLAST is the more commonly used of the two. The most recent versions of
this program have focused on the development of methods for comparing multiple-sequence profiles. WU-
BLAST, on the other hand, has developed a different system for handling gaps as well as a number of
features that are useful for searching genome sequences.
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Different BLAST programs
The four main executable programs in the BLAST distribution are:

[blastall]

Performs BLAST searches using one of five BLAST programs: blastp, blastn, blastx, tblastn, or
tblastx

[blastpgp]

Performs searches in PSI-BLAST or PHI-BLAST mode

[bl2seq]

Performs a local alignment of two sequences

[formatdb]

Converts a FASTA-format flat file sequence database into a BLAST database

blastall encompasses all the major options for ungapped and gapped BLAST searches. A full list of
its command-line arguments can be displayed with the command blastall - :

[-p]

Program name. Its options include:

blastp

Protein sequence (PS) query versus PS database

blastn

Nucleic acid sequence (NS) query versus NS database

blastx

NS query translated in all six reading frames versus PS database

tblastn

PS query versus NS database dynamically translated in all six reading frames
tblastx

Translated NS query versus translated NS database—computationally intensive

blastpgp allows you to use two new BLAST modes: PHI-BLAST (Pattern Hit Initiated BLAST) and
PSI-BLAST (Position Specific Iterative BLAST). PHI-BLAST uses protein motifs, such as those found in
PROSITE and other motif databases, to increase the likelihood of finding biologically significant matches.
PSI-BLAST uses an iterative alignment procedure to develop position-specific scoring matrices, which
increases its capability to detect weak pattern matches.

bl2seq allows the comparison of two known sequences using the blastp or blastn programs. Most of
the command-line options for bl2seq are similar to those for blastall.
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Evaluating BLAST results
A BLAST search provides three related pieces of information that allow you to interpret its results:
raw scores, bit scores, and E-values.

The raw score for a local sequence alignment is the sum of the scores of the maximal-scoring
segment pairs (MSPs) that make up the alignment. Bit scores are raw scores that have been converted from
the log base of the scoring matrix that creates the alignment to log base 2. E-values provide information
about the likelihood that a given sequence alignment is significant. An alignment's E-value indicates the
number of alignments one expects to find with a score greater than or equal to the observed alignment's
score in a search against a random database. Thus, a large E-value (5 or 10) indicates that the alignment
probably has occurred by chance, and that the target sequence has been aligned to an unrelated sequence in
the database. E-values of 0.1 or 0.05 are typically used as cutoffs in sequence database searches. Using a
larger E-value cutoff in a database search allows more distant matches to be found, but it also results in a
higher rate of spurious alignments. Of the three, E values are the values most often reported in the literature.

There is a limit beyond which sequence similarity becomes uninformative about the relatedness of
the sequences being compared. This limit is encountered below approximately 25% sequence similarity for
protein sequences. In the case of protein sequences with low sequence similarity that are still believed to be
related, structural analysis techniques may provide evidence for such a relationship. Where structure is
unknown, sequences with low similarity are categorized as unrelated, but that may mean only that the
evolutionary distance between sequences is so great that a relationship can't be detected.

Local Alignment Using FASTA
Another method for local sequence alignment is the FASTA algorithm. FASTA precedes BLAST
and like BLAST, it is available both as a service over the Web and as a downloadable set of programs.

The FASTA algorithm

FASTA first searches for short sequences (called ktups) that occur in both the query sequence and
the sequence database. Then, using the BLOSUM50 matrix, the algorithm scores the 10 ungapped
alignments that contain the most identical ktups. These ungapped alignments are tested for their ability to
be merged into a gapped alignment without reducing the score below a threshold. For those merged
alignments that score over the threshold, an optimal local alignment of that region is then computed, and
the score for that alignment (called the optimized score) is reported.

FASTA ktups are shorter than BLAST words, typically 1 or 2 for proteins, and 4 or 6 for nucleic
acids. Lower ktup values result in slower but more sensitive searches, while higher ktup values yield faster
searches with fewer false positives.

The FASTA programs
The FASTA distribution contains search programs that are analogous to the main BLAST modes,
with the exception of PHI-BLAST and PSI-BLAST.
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[fasta]

Compares a protein sequence against a protein database (or a DNA sequence against a DNA
database) using the FASTA algorithm

[ssearch]

Compares a protein sequence against a protein database (or DNA sequence against a DNA database)
using the Smith-Waterman algorithm

[fastx /fasty]
Compares a DNA sequence against a protein database, performing translations on the DNA sequence

[tfastx /tfasty]

Compares a protein sequence against a DNA database, performing translations on the DNA sequence
database

[align]
Computes the global alignment between two DNA or protein sequences

[lalign]
Computes the local alignment between two DNA or protein sequences

Multifunctional Tools for Sequence Analysis

Several research groups and companies have assembled web-based interfaces to collections of
sequence tools. The best of these have fully integrated tools, public databases, and the ability to save a
record of user data and activities from one use to another. If you're searching for matches to just one or a
few sequences and you want to search the standard public databases, these portals can save you a lot of time
while providing most of the functionality and ease of use of a commercial sequence analysis package.

The Biology Workbench

resource is freely available to academic users and offers keyword and
sequence-based searching of nearly 40 major sequence databases and over 25 whole genomes. Both BLAST
and FASTA are implemented as search and alignment tools in the Workbench, along with several local and
global alignment tools, tools for DNA sequence translation, protein sequence feature analysis, multiple
sequence alignment, and phylogenetic tree drawing. Although its interface can be somewhat complicated,
involving a lot of window scrolling and button clicking, the Biology Workbench is comprehensive,
convenient, and accessible web-based toolkit. One of its main benefits is that many sequence file formats
are accepted and can move easily from keyword-based database search, to sequence-based search, to
multiple alignment, to phylogenetic analysis.

EMBOSS

is "The European Molecular Biology Open Software Suite”. EMBOSS is a free Open
Source software analysis package specially developed for the needs of the molecular biology user
community. The software automatically copes with data in a variety of formats and even allows transparent
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retrieval of sequence data from the web. Within EMBOSS you will find numerous applications covering
areas such as:

. Sequence alignment,
. Rapid database searching with sequence patterns,
. Protein motif identification, including domain analysis,
. Nucleotide sequence pattern analysis---for example to identify CpG islands or repeats,
. Codon usage analysis for small genomes,
. Rapid identification of sequence patterns in large scale sequence sets,
. Presentation tools for publication, and much more.
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Tools for Genomics and Proteomics

The sequence alignment methods can be used to analyze a single sequence or structure and compare
multiple sequences of single-gene length. These methods can help in understanding the function of a
particular gene or the mechanism of a particular protein. However, it is also interesting to understand how
gene functions manifest in the observable characteristics of an organism: its phenotype. In this respect, some
datatypes and tools are available that allow studying the integrated function of all the genes in a genome.

Experimental strategies for analysing one gene or one protein are progressively replaced by parallel
approaches in which many genes are examined simultaneously. Using bioinformatics algorithms
information from multiple sources can be integrated to form a complete picture of genomic function and its
expression, as well as to allow comparison between the genomes of different organisms. Figure 1 shows
how genome information is transformed in phenotypic expression.

DNA

Transcription

Translation

" Protein

Pans

|

| Phenotype

Figure 1. Transferring genome information to phenotype

For decades biologists have been collecting information from the molecular to the cellular level and
beyond to see the functions of the genome as a whole. The process of automating and scaling up biochemical
experimentation, and treating biochemical data as a public resource, is significantly facilitated by the use of
bioinformatics.

The has not only made gigabytes of biological sequence information
available but it has begun to change the entire landscape of biological research by its example. Protein
structure determination has not yet been automated at the same level as sequence determination, but several
projects in structural genomics are launched, with the main goal to create a high-speed structure
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determination approaches. The concept behind the DNA microarray experiment allows performance of
comprehensive biochemical and molecular biology experiments.

One of the major tasks of bioinformatics is creating software systems for information management
that can effectively annotate each part of a genome sequence with information about everything from its
function, to the structure of its protein product (if it has one), to the rate at which the gene is expressed at
different life stages of an organism. Another task of genome information management systems is to allow
users to make intuitive, visual comparisons between large data sets. Many new data integration projects,
from visual comparison of multiple genomes to visual integration of expression data with genome map data,
are developed.

Sequencing Genes and Genomes
One of the first computational challenges in the process of sequencing a gene (or a genome) is the
interpretation of the pattern of fragments on a sequencing gel.

Analysis of Raw Sequence Data: Basecalling

The process of assigning a sequence to raw data from DNA sequencing is called basecalling. If this
step doesn't produce a correct DNA sequence, any subsequent analysis of the sequence is affected. All
sequences deposited in public databases are affected by basecalling errors due to uncertainties in sequencer
output or to equipment malfunctions. EST and genome survey sequences have the highest error rates (1/10
-1/100 errors per base), followed by finished sequences from small laboratories (1/100 - 1/1,000 per base)
and finished sequences from large genome sequencing centers (1/10,000 -1/100,000 per base). Any
sequence in is likely to have at least one error. Improving sequencing technology, and especially
the signal detection and processing involved in DNA sequencing, is still the subject of active research.

There are two popular high-throughput methods for DNA sequencing. DNA sequencing relies on
the ability to create a ladder of fragments of DNA at single base resolution and separate the DNA fragments
by gel electrophoresis. Generally, the fragmented DNA is labeled with four different fluorescent labels, one
for each base-specific fragmentation, and run a mixture of the four samples in one gel lane. Another
commonly used sequencing method runs each sample in a separate, closely spaced lane. In both cases, the
gel is scanned with a laser, which excites each fluorescent band on the gel in sequence. Each of these
protocols has its advantages in different types of experiments, so both are in common use.

There are a variety of commercial and noncommercial tools for automated basecalling. Some of
them are fully integrated with particular sequencing hardware and input datatypes. Most of them allow, and
in fact require, curation by an expert user as sequence is determined.

The raw result of sequencing is a record of fluorescence intensities at each position in a sequencing
gel. Figure 2 shows detector output from a modern sequencing experiment. The challenge for automated
basecalling software is to translate the fluorescence peaks into four-letter DNA sequence code. As the
separation of bands on a sequencing gel isn't perfect, the quality of the separation and the shape of the bands
worsens over the length of the gel. Peaks broaden and intermix, and at some point (usually 400 -500 bases)
the peaks become impossible to resolve. It is well-understood that systematic errors occurred, so computer
algorithms are developed in a way to compensate them. The main goal of the basecalling software is to
improve the accuracy of each sequence read, as well as to extend the range of sequencing runs, by providing
means to deconvolute the more unclear fluorescence peaks at the end of the run.
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Figure 2. Detector output from a sequencing experiment

Modern sequencing technologies replace gels with microscopic capillary systems, but the core
concepts of the process are the same as in gel-based sequencing: fragmentation of the DNA and separation
of individual fragments by electrophoresis.

Sequencing an Entire Genome

Genome sequencing isn't simply a scaled -up version of a gene-sequencing run. The sequence length
limit of something like 500 base pairs. And the length of a genome can range from tens of thousands to
billions of base pairs. So, in order to sequence an entire genome, the genome has to be cleaved into
fragments, and then the sequenced fragments need to be reassembled into a continuous sequence.

There are two popular strategies for sequencing genomes: the shotgun approach and the clone contig
approach. Combinations of these strategies are often used to sequence larger genomes.

The shotgun approach

Shotgun DNA sequencing is an automated approach for DNA sequencing. Here, DNA is broken into
random fragments of manageable length (around 2,000 KB). They are cloned into plasmids (called a clone
library). If a sufficiently large amount of genomic DNA is fragmented, the set of clones spans every base
pair of the genome many times. The end of each cloned DNA fragment is then sequenced, or in some cases,
both ends are sequenced. Although only 400 -500 bases at the end(s) of the fragment are sequenced, if
enough clones are randomly selected from the library, the amount of sequenced DNA still encompass every
base pair of the genome several times. The final step in shotgun sequencing is sequence assembly. Usually,
assembly of sequences results in multiple contigs—clearly assembled lengths of sequence that don't overlap
each other. The final steps in sequencing a complete genome by shotgun sequencing are either to find clones
that can fill in the missing regions, or to use PCR or other techniques to amplify DNA sequence from the

gaps.

The clone contig approach

The clone contig approach relies on shotgun sequencing as well, but on a smaller scale. Instead of
starting by breaking down the entire genome into random fragments, the clone contig approach starts by
breaking it down into restriction fragments, which can then be cloned into artificial chromosome vectors
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and amplified. Each of the cloned restriction fragments can be sequenced and assembled by a standard
shotgun approach. When the genome is cleaved into restriction fragments, it is only partially degraded. The
amount of restriction enzyme applied to the DNA sample is sufficient to cut at only approximately 50% of
the available restriction sites in the sample. This means that some fragments will span a particular restriction
site, while other fragments will be cut at that particular site and will span other restriction sites. So, the clone
library that is made up of these restriction fragments will contain overlapping fragments. The process of
assembly starts with so called chromosome walking. Finding a specific clone, then finding the next clone
that overlaps it, and then the next, etc. Usually, a probe hybridization technique or PCR are used to help
identify the restriction fragment that has been inserted into each clone.

Genomes can be mapped at various levels of detail. Genetic linkage maps could be created which
assign the genes that give rise to particular traits to specific loci on the chromosome. Thus, they provide a
set of ordered markers, sometimes very detailed depending on the organism, which can help researchers
understand genome function (and provide a framework for assembling a full genome map). Also, physical
maps can be built in several ways: by digesting the DNA with restriction enzymes that cut at particular sites,
by developing ordered clone libraries, and by fluorescence microscopy of single, restriction enzyme-cleaved
DNA molecules fixed to a glass substrate. The key to each method is that, using a combination of labeled
probes and known genetic markers (in restriction mapping) or by identifying overlapping regions (in library
creation), the fragments of a genome can be ordered correctly into a highly specific map.

LIMS: Tracking mini sequences

Tracking the millions of uniqgue DNA samples that may be isolated from the genome is one of the
biggest information technology challenges. The systems that manage output from high-throughput
sequencing are called Laboratory Information Management Systems (LIMS), and its development and
maintenance make up the biggest share of bioinformatics work in industrial settings. Other high throughput
technologies, such as microarrays and cheminformatics, also require complicated support.

Sequence Assembly

Basecalling is only the first step in putting together a complete genome sequence (Fig. 3). Once the
short fragments of sequence are obtained, they must be assembled into a complete sequence that may be
many thousands of times their length. The next step is sequence assembly.

DNA sequencing using a shotgun approach provides thousands or millions of mini sequences, each
400-500 fragments in length. The fragments are random and can partially or completely overlap each other.
Because of these overlaps, every fragment in the set can be identified by sequence identity as adjacent to
some number of other fragments. Each of those fragments overlaps yet another set of fragments, and so on.
Finally, all the fragments need to be optimally join together into one continuous sequence. However, the
repetitive sequences can complicate the assembly process. Some fragments will be uncloneable, and the
sequencing process will fail, leaving gaps in the DNA sequence that complicate automated assembly. If
there isn't sufficient information at some point in the sequence for assembly to continue, the sequence contig
that is being created comes to an end, and a new contig starts.
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WHOLE GENOME

Sonic disruption or other random fragmentation

-

fragments (approx. 2Mb in length — enough to span the genome 6-10 times)
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WHOLE GENOME SEQUENCE

Figure 3. The shotgun DNA sequencing approach

Accessing Genome Information on the Web

Partial or complete DNA sequences from hundreds of genomes are available in . Putting
those sequence records together into an intelligible representation of genome structure isn't so easy. There
are several efforts underway to integrate DNA sequence with higher-level maps of genomes in a user-
friendly format. So far, these efforts are focused on the human genome and genomes of important plant and
animal model systems.

NCBI Genome Resources

NCBI offers access to a wide selection of web-based genome analysis tools from the Genomic
Biology section of its main web site. Their interfaces are user-friendly, and NCBI supplies plenty of
documentation explaining how to use the provided tools and databases.

Some of the available genomic tools are:

Genome Information

Genome project information is available from the page at NCBI. Database listings
are available for the full database or for related groups of organisms such as microorganisms, archaea,
bacteria, eukaryotes, and viruses. Each entry in the database is linked to a taxonomy browser entry or a
home page with further links to available information about the organism. If a genome map of the organism
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is available, a "See the Genome" link shows up on the organism's home page. From the home page, you can
also download genome sequences and references.

Map Viewer

Depending on the genome, you can access links to overview maps showing known protein-coding
regions, listings of coding regions for protein and RNA, and other information. distinguishes
between four levels of information: the organism's home page, the graphical view of the genome, the
detailed map for each chromosome (aligned to a master map from which the user can select where to zoom
in), and the sequence view, which graphically displays annotations for regions of the genome sequence.

ORF Finder

is a tool for locating open reading frames in a DNA
sequence. ORF finders translate the sequence using standard or user-specified genetic code. In noncoding
DNA, stop codons are frequently found. Information from the ORF finder can provide hints about the
precise reading frame for a DNA sequence and about where coding regions start and stop. For many
genomes found in the Entrez Genomes database, ORF Finder is available as an integrated tool from the map
view of the genome.

HomoloGene

is an automated system for constructing putative homology groups from the complete
gene sets of a wide range of eukaryotic species. The ortholog pairs are identified either by curation of
literature reports or calculation of similarity. The HomoloGene database can be searched using gene
symbols, gene names, GenBank accession numbers, and other features.

Clusters of Orthologous Groups (COG)

is a database of orthologous protein groups. The database was developed by comparing protein
sequences across 97 genomes. The entries in COG represent genome functions that are conserved
throughout much of evolutionary history. The COG database can be searched by functional category,
phylogenetic pattern, and a number of other properties.

Genome Annotation

Genome annotation in practice is hyperlinking of content between multiple databases—sequence,
structure, and functional genomics fully linked together in a queryable system. It is a difficult process
because there are a huge number of different pieces of information attached to every gene in a genome and
it generally relies on relational databases to integrate genome sequence information with other data.

Genome Comparison

Pairwise or multiple comparison of genomes is the tool that can be used in many different studies,
such as answering of basic questions of evolutionary biology (genetic polymorphisms) or very specific
clinical questions (variations in phenotype).

Comparing of whole genomes, rather than just comparing genes one at a time, can help in defining
the regions of similarity within uncharacterized or even supposedly redundant DNA. Genome comparison
will also aid in genomic annotation. Prototype genome comparisons allows justifying the sequencing of
additional genomes and it is useful both at the map level and directly at the sequence level.
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PipMaker

is a tool that computes alignments of similar regions in two DNA sequences. This is useful
in identifying large-scale patterns of similarity in longer sequences. The process of using PipMaker is
relatively simple. Starting with two FASTA-format sequence files, you first generate a set of instructions
for masking sequence repeats (using the RepeatMasker server). This reduces the number of uninformative
hits in the sequence comparison. The resulting information, plus a simple file containing a numerical list of
known gene positions, is submitted to the PipMaker web server at Penn State University and the results are
emailed to you.

MUMmer

Another program for ultra-fast alignment of large-scale DNA and protein sequences is
Its first application was a detailed comparison of genomes of two strains of M. tuberculosis. MUMmer can
compare sequences millions of base pairs in length and produce colorful visualizations of regions of
similarity. MUMmer is based on a computer algorithm called a suffix tree, which essentially makes it easy
for the system to rapidly handle a large number of pairwise comparisons. MUMmer can also align
incomplete genomes; it can easily handle the 100s or 1000s of contigs from a shotgun sequencing project
and will align them to another set of contigs or a genome using the NUCmer program included with the
system. If the species are too divergent for a DNA sequence alignment to detect similarity, then the PROmer
program can generate alignments based upon the six-frame translations of both input sequences.

Functional Genomics

Launching of high-speed sequencing methods has changed the way we study the DNA sequences
that code for proteins. It is now becoming possible to view the whole DNA sequence of a chromosome as a
single entity and to examine how the parts of it work together to produce the complexity of the organism as
awhole.

The functions of the genome break down loosely into a few obvious categories: metabolism,
regulation, signaling, and construction. Metabolic pathways convert chemical energy derived from
environmental sources into useful work in the cell. Regulatory pathways are biochemical mechanisms that
control what genomic DNA does: when it is expressed or not. Genomic regulation involves not only
expressed genes but structural and sequence signals in the DNA where regulatory proteins may bind.
Signaling pathways control the fluxes of chemicals from one compartment in a cell to another. Many
regulatory systems for the control of DNA transcription have been studied. Mapping these metabolic,
regulatory, and signaling systems to the genome sequence is the goal of the field of functional genomics.

Sequence-Based Approaches for Analyzing Gene Expression
In addition to genome sequence, GenBank contains many other kinds of DNA sequence.

(EST) data for an organism can be an extremely useful starting point for analysis of gene
expression. ESTs are partial sequences of cDNA clones of cellular mMRNA. mRNA levels respond to changes
in the cell or its environment; mMRNA levels are tissue dependent, and they change during the life cycle of
the organism as well. Quantitation of MRNA or cDNA provides a good measure of what a genome is doing
under particular conditions.
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NCBI offers a database called dbEST that provides access to several thousand libraries of ESTs.
Quite a large number of these are human EST libraries, but there are libraries from dozens of other organisms
as well.

DNA Microarrays

Recently, new technology has made it possible for researchers to rapidly explore expression patterns
of entire genomes. A microarray (or gene chip) is a small glass which surface is covered with 20,000 or
more precisely placed spots each containing a different DNA oligomer. cDNA can also be affixed to the
slide to function as probes. Other media, such as thin membranes, can be used in place of slides. The key to
the experiment is that each piece of DNA is immobilized and any reaction that results in a change in
microarray signal can be precisely assigned to a specific DNA sequence.

Microarrays are conceptually no different from traditional hybridization experiments such as
Southern Blots or Northern Blots. In traditional blotting, the protein sample is immobilized; in microarray
experiments, the probe is immobilized, and the amount of information that can be collected in one
experiment is vastly larger. Figure 4 shows just a portion of a microarray scan.

Figure 4. A microarray scan

Microarray technology is now routinely used for DNA sequencing experiments; for instance, in
testing for the presence of polymorphisms. Another development is the use of microarrays for gene
expression analysis. When a gene is expressed, an mRNA transcript is produced. If DNA oligomers
complementary to the genes of interest are placed on the microarray, mMRNA or cDNA can be hybridized to
the chip, providing a rapid assay as to whether or not those genes are being expressed. Experiments like
these for example have been performed in yeast to test differences in whole-genome expression patterns in
response to changes in ambient sugar concentration. Microarray experiments can provide information about
the behavior of every one of an organism's genes in response to environmental changes.

Bioinformatics Challenges in Microarray Design and Analysis

Bioinformatics plays multiple roles in microarray experiments. In fact, it is difficult to consider of
microarrays as useful without the involvement of computers and databases. From the design of chips for
specific purposes, to the quantitation of signals, to the extraction of groups of genes with linked expression
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profiles, microarray analysis is a process that is difficult, if not impossible, to do without the use of specific
bioinformatics software.

In the public domain, several projects for linking expression data with associated sequences and
annotations are ongoing. The biggest microarray database is the . The
(NHGRI) is currently offering a demonstration version of an array data
management system that includes both analysis tools and relational database support.

Planning array experiments

A key element in microarray experiments is chip design. Chip design is a process that can take
months. In order for microarray results to be clear and unambiguous, each DNA probe in the array must be
sufficiently unique that only one specific target gene can hybridize with it. Otherwise, the amount of signal
detected at each spot will be quantitatively incorrect.

Analyzing scanned microarray images

Once the array experiment is complete, you'll find yourself in possession of a lot of very large TIFF
files containing scanned images of your arrays. The standard for public-domain microarray analysis tools
are the packages developed at Stanford. One package, , Is the image analysis tool, well regarded
and widely used. It supports TIFF files as well as the Stanford SCN format.

Numerous others softwares exist for microarray data analysis, such as:

enables you to visualize and analyze microarray data generated on Illumina
platforms. The software package is composed of discrete application modules that enable you to obtain a
comprehensive view of the genome, gene expression, and gene regulation.

IS an open-source tools for microarray data management and
reporting, image analysis, normalization and pipeline control, and data mining and visualization.

is a software package for automatic processing of the one- and two-color images produced in
cDNA, CGH or protein microarray technologies.

(Automatic Image Processing system for Microarray) provides a method for uncalibrated
microarray gridding and quantitative image analysis. AIM is a fast suffix array construction algorithm that
performs very well even for worst-case strings. This system operates independently as well as command-
line tools.

, a fully automatic array image analysis software which can process single or multiple
array images entirely unattended.

Clustering expression profiles

The most popular strategy for analysis of microarray data is the clustering of expression profiles. An
expression profile can be visualized as a plot that describes the change in expression at one spot on a
microarray grid over the course of the experiment. The course of the experiment changes with the context,
anything from changes in the concentration of nutrients in the medium in which cells are being grown prior
to having their DNA hybridized to the array, to cell cycle stages.

Different clustering methods, such as hierarchical clustering or SOMs (self-organizing maps) may
work better in different situations, but the general aim of each of these methods is the same. If two genes
change expression levels in the same way in response to a change in environment, it can be assumed that
those genes are related. They may share something as simple as a promoter, or more likely, they are
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controlled by the same complex regulatory pathway. Automated clustering of expression profiles looks for
similar features but doesn't necessarily point to causes for those changes.

Proteomics

Proteomics refers to techniques that simultaneously study the entire protein complement of a cell.
While protein purification and separation methods are constantly improving, and the time-to completion of
protein structures determined by NMR and x-ray crystallography is decreasing, there is as yet no single way
to rapidly crystallize the entire protein complement of an organism and determine every structure. The
technological advance in biochemistry that most requires informatics support is the immobilized-gradient
2D-PAGE process and the subsequent characterization of separated protein products by mass spectrometry.

Experimental Approaches in Proteomics

Knowing when and at what levels genes are being expressed is only the first step in understanding
how the genome determines phenotype. While mMRNA levels are correlated with protein concentration in
the cell, proteins are subject to post-translational modifications that can't be detected with a hybridization
experiment. Experimental tools for determining protein concentration and activity in the cell are the crucial
next step in the process.

Another high-throughput technology that is emerging as a tool in functional genomics is 2D gel
electrophoresis. Two-dimensional gel electrophoresis can be used to separate protein mixtures containing
thousands of components. The first dimension of the experiment is separation of the components of a
solution along a pH gradient (isoelectric focusing). The second dimension is separation of the components
orthogonally by molecular weight. Separation in these two dimensions can resolve even a complicated
mixture of components. Figure 5 shows an example of 2D-PAGE map from E. coli. The 2D-PAGE
experiment separates proteins from a mixed sample so that individual proteins can be identified. Each spot
on the map represents a different protein.

Figure 5. A 2D-PAGE map from E. coli
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Using 2D gel electrophoresis allows very precise protein separations, resulting in standardized high-
density data arrays. They can therefore be subjected to automated image analysis and quantitation and used
for accurate comparative studies. The other advance that has put 2D gel technology at the forefront of
modern molecular biology methods is the capacity to chemically analyze each spot on the gel using mass
spectrometry. This allows the measurable biochemical phenomenon—the amount of protein found in a
particular spot on the gel—to be directly connected to the sequence of the protein found at that spot.

Informatics Challenges in 2D-PAGE Analysis

The analysis pathway for 2D-PAGE gel images is essentially quite similar to that for microarrays.
The first step is an image analysis, in which the positions of spots on the gel are identified and the boundaries
between different spots are resolved. Molecular weight and isoelectric point (PI) for each protein in the gel
can be estimated according to position.

Next, the spots are identified, and sequence information is used to make the connection between a
particular spot and its gene sequence. In proteome analysis, the immobilized proteins can either be
sequenced in situ or spots of protein can be physically removed from the gel, eluted, and analyzed using
mass spectrometry methods such as electrospray ionization mass spectrometry (ESI-MS) or matrix-assisted
laser desorption ionization mass spectrometry (MALDI).

Tools for Proteomics Analysis

Several public-domain programs for proteomics analysis are available on the Web. Most of these
can be accessed through the excellent proteomics resource at (EXPASY).
ExXPASYy is the Swiss Institute of Bioinformatics Resource Portal which provides access to scientific
databases and software tools (i.e., resources) in different areas of life sciences including proteomics,
genomics, phylogeny, systems biology, population genetics, transcriptomics etc.

Biochemical Pathway Databases

Gene and protein expression are only two steps in the translation of genetic code to phenotype. Once
genes are expressed and translated into proteins, their products participate in complicated biochemical
interactions called pathways, as shown in Figure 6. Each pathway may supply chemical precursors to many
other pathways, meaning that each protein has relationships not only to the preceding and following
biochemical steps in a single pathway, but possibly to steps in several pathways. The complicated branching
of metabolic pathways are far more difficult to represent and search than the linear sequences of genes and
genomes.
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Figure 6. A complex metabolic pathway

Several web-based services offer access to metabolic pathway information.

KEGG
The best known metabolic pathway resources on the Web is the

(KEGG). KEGG provides its metabolic overviews as map illustrations, rather than text-only, and
can be easier to use for the visually-oriented user. KEGG also provides listings of EC numbers and their
corresponding enzymes broken down by level, and many helpful links to sites describing enzyme and ligand
nomenclature in detail. The database, associated with KEGG, is a useful resource for identifying
small molecules involved in biochemical pathways. KEGG is searchable by sequence homology, keyword,
and chemical entity; you can also input the LIGAND ID codes of two small molecules and find all of the
possible metabolic pathways connecting them.

PathDB

is another type of metabolic pathway database. While it contains roughly the same
information as KEGG—identities of compounds and metabolic proteins, and information about the steps
that connect these entities—it handles information in a far more flexible way than the other metabolic
databases. Instead of limiting searches to arbitrary metabolic pathways and describing pathways with
preconceived images, PathDB allows you to find any set of connected reactions that link point A to point
B, or compound A to compound B. PathDB contains, in addition to the usual search tools, a pathway
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visualization interface that allows you to review any selected pathway and display different representations
of the pathway.
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The Internet has completely changed the way scientists search for and exchange information.
Data that once had to be communicated on paper is now digitized and distributed from centralized
databases. Articles in journals are available online. And nearly every research group has a web page
offering everything from reprints to software downloads to data to automated data-processing services.

Search Engines and Boolean Searching
AltaVista, Mozilla, Google, Internet explorer, Safari, and dozens of other search engines exist
to help you find the billion or more pages that respond to your search. However, often scientists are
looking for perhaps a couple of needles in a large haystack. Knowing how to structure a query to limit
the majority of the junk that will come up in a search is very useful, both in web searching and in
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keyword-based database searching. Understanding how to formulate boolean queries that limit your
search space is a critical research skill.

Most web surfers approach searching randomly at best. But each search engine makes different
default assumptions, so if you enter protein structure into Excite's query field, you are asking for an
entirely different search than if you enter protein structure into Google's query field. In order to search
effectively, you need to use boolean logic, which is an extremely simple way of stating how a group of
things should be divided or combined into sets.

Search engines and public biological databases use some form of boolean logic. Boolean queries
restrict the results that are returned from a database by joining a series of search terms with the operators
AND, OR, and NOT. For example: joining two key terms with AND finds documents that contain only
key term1 and key term2 ; using OR returns documents that contain either key term1 or key term2 (or
both); and using NOT discovers documents that contain key term1 but not key term2.

However, search engines differ in how they interpret a space. Some of them consider a space as
OR, so when protein structure is typed, the search engine looks for protein or structure. As a result, a
lot of advertisements for fad diets and protein supplements come up before to get to the scientific sites
of interest. On the other hand, in Google space refers to AND, so the only references to be found are
those that contain protein and structure.

Boolean queries are read from left to right, just like text. Parentheses can structure more
complex boolean queries. For instance, if you look for documents that contain key terml and one of
either key term2 or key term3, but not key term4, your query would look like this: (key term1 AND (key
term2 OR key term3)) NOT key term4.

Many search engines allow to use quotation marks to specify a phrase. In order to find only
documents in which the key term enzyme activity appear together in sequence, searching for “enzyme
activity" is one way to narrow the results.

There are many excellent web tutorials available on boolean searching. Try a search with the
phrase , and see what comes up.

Finding Scientific Articles

An excellent resource for searching the scientific literature in the biological sciences is the free
server sponsored by the at the National Library
of Medicine. This server makes it possible for anyone with a web browser to search the Medline
database. There are other literature databases of comparable quality available, but most of these are not
free. Outside of refereed resources, however, anyone can publish information on the Web. Often
research groups make papers available as technical reports on their web sites. These technical reports
may never be peer reviewed or published outside the research group's home organization, and your
only evidence to their quality is the reputation and expertise of the authors. This isn't to say that you
shouldn't trust or seek out these sources. Many government organizations and academic research groups
have reference material of near-textbook quality on their web sites. For example, the University of
Washington Genome Center has an excellent tutorial on genome sequencing, and NCBI has a good
practical tutorial on use of the BLAST sequence alignment program and its variants.
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Using PubMed Effectively
is one of the most valuable web resources available to biologists. Over 4,000 journals

are indexed in PubMed, including most of the well-regarded journals in cell and molecular biology,
biochemistry, genetics, and related fields, as well as many clinical publications of interest to medical
professionals. PubMed uses a keyword-based search strategy and allows the boolean operators AND,
OR, and NOT in query statements. Users can specify which database fields to check for each search
term by following the search term with a field name enclosed in square brackets. Additionally, users
can search PubMed using Medical Subject Heading (MeSH) terms. MeSH is a library of standardized
terms that may help locate manuscripts that use alternate terms to refer to the same concept. The

allows users to enter a word or word fragment and find related keywords in the MeSH library.
PubMed automatically finds MeSH terms related to query terms and uses them to enhance queries.

For example, we searched for “protein structure” in PubMed. The terms protein and structure
are automatically joined with an AND unless otherwise specified. The resulting boolean query
statement submitted to PubMed is actually:

("proteins"[MeSH Terms] OR "proteins"[All Fields] OR ™"protein"[All Fields]) AND
("Structure"[Journal] OR "structure"[All Fields])

The results of the search are shown in Figure 1.

'f.-j NCBI Resources ¥ How To (¥ Sign in to NCBI
Publmed.gm- PubMed ]| protein structure | Gl Search |
ool Lren ol Meeine Create RSS Create alert Advanced Help
Article types Format: Summary ~ Sort by Best Match ~ Per page: 20 ~ Send to~  Filters: Manage Filters
Clinical Trial
Review Sort by:
Customize Search results
Best match Most recent
Text availability ltems: 1 to 20 of 687978 Page[1 | 0f34393 Next> Lasiz>
Abstract
Free full text . ) . —
Full text [ Conservation of protein structure over four billion years. Results by year
1. Ingles-Prieto A, Ibarra-Molero B, Delgado-Delgado A, Perez-Jimenez R, Fernandez JM, Gaucher EA,
Publication dates Sanchez-Ruiz JM, Gavira JA
5 years Structure. 2013 Sep 3;21(9):1690-7. doi: 10.1016/].5tr.2013.06.020. Epub 2013 Aug &.
10years PMID: 23932589 Free PMC Article
Custom range... Similar articles «
. Download CSV
Species ) . 3 . X X . .
Humans [ Experimental Protein Structure Verification by Scoring with a Single. Unassigned NMR Spectrum.
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Peterson JR, Morrissey JH, Rienstra CM. Find related data
Clear all Structure. 2015 Oct 6:23(10)-1958-1966. doi 10.1016/j.str. 2015.07.019. Epub 2015 Sep 10. Database
PMID: 26365800  Free PMC Article
Show additional filters Similar articles
[] structures of C1q-like proteins reveal unique features among the C1g/TNF superfamily.
3
Ressl 8, Vu BK, Vivona S, Mamneﬂ DC, Sudhof TC, Brunger AT. Best match search information -
Structure. 2015 Apr 7,23(4):688-99. doi: 10.1016/.5tr.2015.01.019. Epub 2015 Mar 5.
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[ Extracellular vesicles: a platform for the structure determination of membrane proteins by Cryo-
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Zeev-Ben-Mordehai T, Vasishtan D, Siebert CA, Whittle C, Grunewald K.
Structure. 2014 Nov 4,22(11):1687-92. doi: 10.1016/].str.2014.09.005. Epub 2014 Oct 30. See more
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Figure 1. Results from a PubMed search

As you can see in Figure 2, PubMed also allows you to use a web interface to narrow your
search.
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The Advanced link immediately below the query box on the main PubMed page takes you to
this web form.

2 NCBI  Resources ¥ How To ¥ Sign in to NQ)
PubMed Home More Resources ~ | Help
PubMed Advanced Search Builder You{ [T} Tutorial
Use the builder below to create your search
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Author
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ISBN
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You are here: NCBI = Literature {Journal Support Cer
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GETTING STARTED Location ID POPULAR FEATURED NCBI INFORMATION
NCBI Education MeSH Major Topic PubMed Genetic Testing Registry About NCBI
NCBI Help Manual MeSH Subheading Bookshelf PubMed Health Research at NCBI
NCBI Handbook MeSH Terms - PubMed Central GenBank NCBI News & Blog

Figure 2. Narrowing a search strategy using the Advanced menu in PubMed

The Advanced form allows you to add specificity to your query. You can limit your search to
particular fields in the PubMed database record, such as the Author Name or MeSH Major Topic.
Searches can also be limited by language, content (e.g., searching for review articles or clinical trials
only), and date.

The Public Biological Databases

The nomenclature problem in biology at the molecular level is immense. Genes are commonly
known by unsystematic names. These may come from developmental biology studies in model systems,
so that some genes have names like flightless, shaker, and antennapedia due to the developmental
effects they cause in a particular animal. Other names are chosen by cellular biologists and represent
the function of genes at a cellular level, like homeobox. Still other names are chosen by biochemists
and structural biologists and refer to a protein that was probably isolated and studied before the gene
was ever found.

Though proteins are direct products of genes, they are not always referred to by the same names
or codes as the genes that encode them. This kind of confusing nomenclature generally means that only
a scientist who works with a particular gene, gene product, or the biochemical process can immediately
recognize what the common name of the gene refers to. The biochemistry of a single organism is a
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more complex set of information than the taxonomy of living species was at the time of Linnaeus, so it
isn't to be expected that a clear and comprehensive system of nomenclature will be arrived at easily.
There are many things to be known about a given gene: its source organism, its chromosomal location,
and the location of the activator sequences and identities of the proteins that down and up regulated it.
Genes also can be categorized by when during the organism's development they are expressed, and in
which tissues the expression occurs. They can be characterized by the function of their product, whether
it's a structural protein, an enzyme, or a functional RNA. They can be determined by the metabolic
pathway that their product is part of, by the substrate they modify or by the product they produce
Moreover, they can be categorized by the structural characteristics of their protein products. Figure 3
shows some of the information that could be related with a single gene.

Phylogenetic Metabolic Connectors to
inference profiles other maps
Sequence homologs Cofactors & Metabolic
in other genomes metabolites map locator
Sequence
Functional Experimental
. —
chemistry data
Genome
location / \
Expression Structure
info / \\
Numerical  Cluster Raw Electron  Structure
images values genes data density annotation a55|gnments

Figure 3. Part of the information associated with a single gene

The problem for maintainers of biological databases becomes mainly one of annotation. Correct
annotation of genomic data may be achieved through putting the sufficient information into the
database that there is no question of what the gene is, even if it does have a cryptic common name, and
creating the proper links between that information and the gene sequence and serial number. Storage
of macromolecular data in electronic databases has given rise to a way of working around the problem
of nomenclature. The solution has been to give each new entry into the database a serial number and
then to store it in a relational database that knows the proper linkages between that serial number, any
number of names for the gene or gene product it represents, and all manner of other information about
the gene. This strategy is the one currently in use in the major biological databases.
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Data Annotation and Data Formats

The representation and distribution of biological data is still an open problem in bioinformatics.
The nucleotide sequences of DNA and RNA and the amino acid sequences of proteins reduce neatly to
character strings in which a single letter represents a single nucleotide or amino acid. The remaining
challenges in representing sequence data are verification of the correctness of the data, thorough
annotation of data, and handling of data that comes in ever-larger chunks, such as the sequences of
chromosomes and whole genomes.

The standard reduced representation of the 3D structure of biomolecule consists of the Cartesian
coordinates of the atoms in the molecule. This aspect of representing the molecule is straightforward.
On the other hand, there are a host of complex issues for structure databases that are not completely
resolved. Annotation is still an issue for structural data, although the biology community has attempted
to form a consensus as to what annotation of a structure is currently required. In the last 15 years,
different researchers have developed their own styles and formats for reporting biological data.
Biological sequence and structure databases have developed in parallel in the United States and in
Europe. The use of proprietary software for data analysis has contributed a number of proprietary data
formats to the mix. While there are many specialized databases, we focus here on the fields in which
an effort is being made to maintain a comprehensive database of an entire class of data.

3D Molecular Structure Data

Though DNA sequence, protein sequence, and protein structure are in some sense just different
ways of representing the same gene product, these datatypes currently are maintained as separate
database projects and in unconnected data formats. This is mainly because sequence and structure
determination methods have separate histories of development.

The first public molecular biology database, set up about 10 years before the public DNA
sequence databases, was the (PDB). It represents the central repository for x-ray
crystal structures of protein molecules. While the first finish protein structure was presented in the
1950s, there were not a noteworthy number of protein structures accessible until the late 1970s.
Computers had not created to the point where graphical representation of protein coordinate structure
information was possible, at least at useful speeds. However, in 1971, the PDB was set up at the
Brookhaven National Laboratory, to store protein structure information in a computer-based archive.
A data format created, which owed a lot of its style to the prerequisites of early computer technology.
All through the 1980s, the PDB grew. From 15 sets of entries in 1973, it augments to 69 entries in 1976.
The number of coordinate sets deposited each year remained under 100 until 1988, at which time there
were still fewer than 400 PDB entries.

In the vicinity of 1988 and 1992, the PDB hit the the turning point in its exponential growth
curve. By January 1994, there were 2,143 entries in the PDB; and at the moment the PDB has more
than 14,000 entries. Administration of the PDB has been exchanged to a consortium of entry mark,
called the Research Collaboratory for Structural Bioinformatics, and and a new format for recording of
crystallographic data, the Macromolecular Crystallographic Information File (mmCIF), is being
introduced in to replace the antiquated PDB format. Journals that publish crystallographic results
require submission to the PDB as a condition of publication, which means that nearly all protein
structure data obtained by academic researchers becomes available in the PDB.

A typical issue for information driven investigations of protein structure is the excess and
absence of thoroughness of the PDB. There are numerous proteins for which various crystal structures
have been submitted to the database. Choosing subsets of the PDB information with which to work is
in this manner a critical step in any statistical investigation of protein structure. Numerous statistical
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studies of protein structure depend on sets of protein chains that have close to 25% of their sequence in
common; if this paradigm is utilized, there are still just around 1,000 unique protein folds represented
in the PDB. As the amount of biological sequence data available has grown, the PDB now falls a long
ways behind the gene-sequence databases.

DNA, RNA, and Protein Sequence Data

Sequence databases generally specialize in one type of sequence data: DNA, RNA, or protein.
There are major sequence data collections and deposition sites in Europe, Japan, and the United States,
and there are independent groups that mirror all the data collected in the major public databases, often
offering some software that adds value to the data.

In 1970, Ray Wu sequenced the first segment of DNA; twelve bases that occurred as a single
strand at the end of a circular DNA that was opened utilizing a cleaving enzyme. In any case, DNA
sequencing demonstrated considerably more troublesome than protein sequencing, on the grounds that
there is no chemical process that selectively cleaves the first nucleotide from a nucleic acid chain. At
the point when Robert Holley announced the sequencing of a 76-nucleotide RNA molecule from yeas,
it was following seven years of work. After Holley's sequence was published, different groups refined
the protocols for sequencing, even succeeding in sequence effectively a 3,200-base bacteriophage
genome. Genuine advance with DNA sequencing came after 1975, with the chemical cleavage method
created by Allan Maxam and Walter Gilbert, and with Frederick Sanger's chain terminator procedure.

The first DNA sequence database, established in 1979, was the Gene Sequence Database
(GSDB) at Los Alamos National Lab. While GSDB has since been supplanted by the worldwide
collaboration that is the modern GenBank, up-to-date gene sequence information is still available from
GSDB through the National Center for Genome Resources.

, the , and the

cooperate to make all freely accessible sequence data through GenBank. NCBI has
built up a standard relational database format for sequence information presentation and storage, known
as the ASN.1 format. While this format guarantees to locate the right sequences of the right kind in
GenBank simpler, there are also various services tions giving access to nonredundant versions of the
database. The DNA sequence database developed gradually through its first decade. In 1992, GenBank
contained just 78,000 DNA sequences — a little more than 100 million pairs of DNA. In 1995, the
Human Genome Project, and advances in sequencing innovation, kicked GenBank's growth into high
gear. GenBank currently doubles in size every 6 to 8 months, and its rate of increase is constantly
growing.

Genomic Data

In addition to the Human Genome Project, there are now separate genome project databases for
a large number of model organisms. The sequence content of the genome project databases is
represented in GenBank, but the genome project sites also provide everything from genome maps to
supplementary resources for researchers working on that organism. As of October 2000, NCBI's Entrez
Genome database contained the partial or complete genomes of over 900 species. Many of these are
viruses. The remainder include bacteria; archaea; yeast; commonly studied plant model systems such
as A. thaliana, rice, and maize; animal model systems such as C. elegans, fruit flies, mice, rats, and
puffer fish; as well as organelle genomes. NCBI's web-based software tools for accessing these
databases are constantly evolving and becoming more sophisticated.
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Biochemical Pathway Data

The most vital biological activities don't occur by the action of single molecule, however as the
orchestrated activities of multiple molecules. Since the mid twentieth century, biochemists have
analyzed these functional ensembles of enzymes and their substrates. A couple of research groups have
started work at intelligently arranging and storing these pathways in databases. Key example of
pathway database is KEGG. The Kyoto Encyclopedia of Genes and Genomes (KEGG) stores
comparative information about sequence, structure, and genetic linkage databases. This database is
queryable through web interfaces and are curated by a combination of automation and human expertise.
In addition to these whole genome "parts catalogs,” other, more specialized databases that focus on
specific pathways (such as intercellular signaling or degradation of chemical compounds by microbes)
have been developed.

Gene Expression Data

DNA microarrays (or gene chips) are miniaturized laboratories for the study of gene expression.
Each chip contains a deliberately designed array of probe molecules that can bind specific pieces of
DNA or mRNA. Labeling the DNA or RNA with fluorescent molecules allows the level of expression
of any gene in a cellular preparation to be measured quantitatively. Microarrays also have other
applications in molecular biology, but their use in studying gene expression has opened up a new way
of measuring genome functions.

Since the advancement of DNA microarray technology in the late 1990s, it has turned out that
the increase in available gene expression data will eventually parallel the growth of the sequence and
structure databases. Raw microarray information has been started to be made accessible to the general
audience in particular databases, and the building up of a central data repository for such data is done

( ).

Since a significant number of the early microarray experiments were performed at Stanford,
their genome resources site has connections to raw information and databases that can be queried
utilizing gene names or functional descriptions. Furthermore, the European Bioinformatics Institute has
been instrumental in setting up of standards for deposition of microarray data in databases. Several
databases additionally exist for the deposition of 2D gel electrophoresis results, including

and . 2D-PAGE is an innovation that permits quantitative investigation of
protein concentrations in the cell, for many proteins at the same time. The combination of these two
systems is an intense tool for understanding how genomes function.

Table 1 summarizes sources on the Web for some of the most important databases we've
discussed in this section.
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Table 1. Major Biological Data and Information Sources

Subject Source Link
Biomedical PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
literature
Nucleic acid | GenBank http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
sequence SRS at | http://srs.ebi.ac.uk
EMBL/EBI
Genome Entrez http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Genome
sequence Genome
TIGR http://www.tigr.org/tdb/
databases
Protein GenBank http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein
sequence SWISS-PROT | http://www.expasy.ch/spro/
at EXPASy
PIR http://www-nbrf.georgetown.edu
Protein Protein  Data | http://www.rcsb.org/pdb/
structure Bank
Entrez http://prowl.rockefeller.edu

Structure DB
Protein  and
peptide mass
spectroscopy
PROWL

Post- RESID http://www-nbrf.georgetown.edu/pirwww/search/textresid.html
translational
modifications
Biochemical |ENZYME http://www.expasy.ch/enzyme/

and BIND http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Structure
biophysical
information
Biochemical |PathDB http://www.ncgr.org/software/pathdb/
pathways KEGG http://www.genome.ad.jp/kegg/
WIT http://wit.mcs.anl.gov/WIT2/
Microarray Gene http://industry.ebi.ac.uk/~alan/MicroArray/
Expression
Links
2D-PAGE SWISS- http://www.expasy.ch/ch2d/ch2d-top.html
2DPAGE
Web The EBI | http://www.ebi.ac.uk/biocat/
resources Biocatalog

IUBio Archive | http://iubio.bio.indiana.edu

Searching Biological Databases
There are numerous biological databases, and many alternative web interfaces that provide
access to the same sets of data. Which one to use depends on personal needs, but it's necessary to be
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aware of what kind of data the central data repositories are, and how often the peripheral databases are
synchronized with the central data sources.

The two most established databases are , for DNA sequences; and the
(PDB), for molecular structure data. Each database has its own deposition procedures.
However, both NCBI and PDB have well developed, automated, web-based deposition systems that do
not change often over time.

GenBank
NCBI, in cooperation with EMBL and other international organizations, provides the most
complete collection of DNA sequence data in the world - the database, known as GenBank.

NCBI maintains sequence data from every organism, every source, every type of DNA—from
MRNA to cDNA clones to expressed sequence tags (ESTSs) to high-throughput genome sequencing data
and information about sequence polymorphisms. Users of the NCBI database need to be aware of the
differences between these datatypes so that they can search the data set that's most appropriate for the
work they're doing. The main sequence types that you'll encounter in a full GenBank search include:

MRNA

Messenger RNA, the product of transcription of genomic DNA. mRNA may be edited by the
cell to remove introns (in eukaryotes) or in other ways that result in differences from the transcribed
genomic DNA. May be "partial” or "complete™; an mRNA may not cover the complete coding sequence
of a gene.

cDNA

A DNA sequence artificially generated by reverse transcription of mMRNA. cDNA represents the
coding components of the genomic DNA region that produced the mRNA. May be "partial” or
"complete.”

Genomic DNA

A DNA sequence from genome sequencing that contains both coding and noncoding DNA
sequences. May contain introns, repeat regions, and others. Genomic DNA is generally "complete”; it's
a result of multiple sequencing experiments over a single stretch of a genome, and can generally be
relied upon as a fairly good representation of the real DNA sequence of that region.

EST

Short cDNA sequences prepared from mRNA extracted from a cell under particular conditions
or in specific developmental phases. ESTs are used for quick identification of genes and don't cover
the entire coding sequence of a gene.

GSS

Genome survey sequence. Single-time sequenced part of DNA direct from the genome projects.
Covers each region of sequence only once and may contain a relatively large percentage of sequencing
errors. Genome survey sequence is included in a search only when search a very new hypothetical gene
annotations in a genome project that is still in progress.

There are two ways to search GenBank. The first is to use a text-based query to search the
annotations associated with each DNA sequence entry in the database. The second is to use a method
called BLAST to compare a query DNA (or protein) sequence to a sequence database. Here's a sample
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GenBank record. Each GenBank entry contains annotation—information about the gene's identity, the
conditions under which it was characterized, etc.—in addition to sequence (Fig. 4).

Listeria monocytogenes Sod (sod) gene, sod-2 allele, partial cds

GenBank: AY533467 1
EASTA  Graphics PopSet

Go to: (¥

LaCuUs A¥533487 485 bp DNA linear BCT 26-JUL-2816
DEFINITION Listeria monocytogenes Sod (sod) gene, sod-2 allele, partial cds.
ACCESSTION AY533487
VERSION AY¥533457.1
KEYWORDS
SOURCE Listeria monocytogenss
ORGANISM Listeria monocytogenes
Bacteria; Firmicutes; Bacilli; Bacillsles; Listeriaceae; Listeria.
REFEREMNCE 1 (bases 1 to 485)
AUTHORS Jegot,G., Lanotte,P., Brum,5., Watt,S., Quentin,R. and
Mereghetti, L.
TITLE Genetic diversity of Listeriz monocytogenes housekeeping genes:
evidence for three evolutionary lineages within the species
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 485)
AUTHORS Jegot,5., Lanotte,P., Brum,5., Watt,5., Quentin,R. and
Mereghetti,L.
TITLE Direct Submission
JOURNAL Submitted (26-JAN-29@4) Faculte de Medecine de Tours, Departement
de Microbiologie Medicale et Moleculaire - Unite de Bactericlogie,
2 bis bd Tonnelle, Tours 37832, France
FEATURES Location/Qualifiers
source 1..4a5
forganism="listeria monocytogenes"
/mol_type="genomic DMA"
Jfdb_xref="taxon:1639"
gene <1..>483
Jgene="sod"
Jallele="2"
s <1..>485
feene="sod"
fallele="2"
Jcodon_start=3
/ftransl_table=11
Sproduct="%cd"
/protein_id="AA522321.1"
ftranslation="SAEELVTMLDSVPEDIRGAVRNHGGGHANHTLFHSILSPNGGGA
PTGNLKAATESEFGTFDEFKEKFNAAAAARFOSEHANLYVNDGKLEIVSTANQDSPLS
DGKTPYLGLDVWEHAYYLKEFQMRRPEYIDTFI"

ORIGIN
1 astctgegga sgaattagtt actasccteg atsgeogttcc tgaagatatt cgoggcgcte

61 tccgtaacca cggtepcget catpctaacc atacattegtt ctggtetatt cttagcccaa
121 atggtgegcgg cgctocaact ggcastites asgcagoasat cgaaagcgaa ticggtactt
181 ttgacgestt teaagsaaas ttcastgceg cagcigoege acgttttgegt totgettgee
241 cttggctagt sgttastgat ggcasattag asstcgtitc tacagctaac caagattcte
301 cattaagcga tggcasaaca cccgttcttg gottagatgt ttgggasacat gettactacc
361 ttaaattcca ssaccgtcgt cctgasatata tcgacacatt ttggs

i

Fig. 4. GeneBank record of Listeria monocytogenes superoxide dismutase gene

This sample GenBank record shows the types of fields that can be found in a record from the
GenBank Nucleotide database. In the record could be found the relevant information for the identity of
the protein product, the sequence of the protein product, and its starting and ending point within the
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gene, to the authors who submitted the record and the journal references in which the experiment was
described. The GenBank search interface is nearly identical to the PubMed search interface. The
Advanced features for searching work the same way in the Protein, Nucleic Acid, and Genome
databases as they do for PubMed, although the specific fields that can be searched and limits that can
be set are more or less different.

Saving search results

Sequences can be downloaded from NCBI in several file formats: the simple FASTA format,
which is readable by many sequence analysis programs but contains little information other than
sequence; the GenBank flat file format, which is a legacy flat file format that was used at GenBank
earlier in its history; and the modern ASN.1 (Abstract Syntax Notation One) format. ASN.1 is a generic
data specification, designed to promote database interoperability, that is now used for storage and
retrieval of all datatypes—sequences, genomes, structure, and literature—at NCBI. The NCBI Toolkit,
a code library for developing molecular biology software, relies on the ASN.1 specification. NCBI, and
increasingly, other organizations, rely on the NCBI Toolkit for software development.

The casual database user or depositor doesn't have to think too much about file formats, except
if database files are to be exported and read by another piece of software. NCBI's forms-based interfaces
convert user-entered data into the appropriate format for deposition, and the availability of GenBank
files in FASTA format means that most sequence analysis software can handle sequence files you
download from NCBI without complicated conversions.

When saving results of a GenBank search, the format in which to save them can be easily
chosen. A particularly foolproof format in which to save your sequence files if you're going to process
them with other software is the FASTA format. FASTA files have a simple format, a single comment
line that begins with a > character, followed by single-character DNA sequence on as many lines as
needed to hold the sequence, with no breaks. Of course, some information associated with the gene is
lost when you save the data in FASTA format, but if the program can't read that extra data, it won't be
useful to have it anyway.

Here's a sample of data in FASTA format:

> gene identifier and comments here

MATVQEIRNAQRADGPATVLAIGTATPAHSVNQADYPDYYFRITKSEHMTELKEKFKRMCDKSMIKKRYMYLTEEILKENPN
MCAYMAPSLDARQDIVVVEVPKLGKEAATKAIKEWGQPKSKITHLIFCTTSGVDMPGADYQLTKLIGLRPSVKRFMMYQQG
CFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPADTHLDSLVGQALFGDGAAAVIVGADPDTSVERPLYQLVSTSQTI
LPDSDGAIDGHLREVGLTFHLLKDVPGLISKNIEKSLSEAFAPLGISDWNSIFWIAHPGGPAILDQVESKLGLKGEKLKATRQVL
SEYGNMSSACVLFILDEMRKKSVEEAKATTGEGLDWGVLFGFGPGLTVETVVLHSVPIKA

To save your files in FASTA format, simply use the pulldown menu at the top of the results
page. When you first see it, it will say "Summary," but you can change it to FASTA, ASN.1, and other
formats. Once you've chosen your format, you can click the Save button to save all your sequences into
one big FASTA-format file. Figure 5 shows you how to change the file formats when doing a GenBank
search.
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Figure 5. Selecting the file format to write out a GenBank search result

Saving large result sets

Modern bioinformatics studies increasingly deal with large amounts of sequence data. For
example, gene finding programs are verified on hundreds or thousands of DNA sequences;
comprehensive studies of protein families can involve analysis of up to thousands of protein sequences
as well. In such cases it would be better to use an automated tool that can return a large number of
sequences based on criteria you specify.

NCBI provides just such a tool in the form of . Batch Entrez is one of the tools that
allows the user to select sequences by source organism, by an Entrez query (using the query structure
described in the section on PubMed), or by a list of accession numbers (provided by the user in the
form of a text file). The results of a Batch Entrez search are then packaged in a file that is downloaded
to the user's computer, where the complete result set can be edited manually or using a script.

At this time, all the public databases have at least FTP sites that allows to download the entire
database on the computer. That can take up a lot of space on the hard disk, but is more easier to handle
a large set of results in comparison to the interactive web site. When having a local copy of the big
databases of interest, a script can be written that can processes the database, looking for particular
keyword of choice, and writing out the desired information from a file.

PDB

Unlike NCBI, the (PDB) contains only one type of molecular data: molecular
structures of molecules and, to a growing extent, the underlying raw data sets from which the molecular
structures were modeled. It offers a number of services for submitting and retrieving three-dimensional
structure data. The home page of the RCSB site provides links to services for depositing three-
dimensional structures, information on how to obtain the status of structures undergoing processing for
submission, ways to download the PDB database, and links to other relevant sites and software.
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Figure 6. PDB features

The main information stored in the PDB consists of coordinate files for biological molecules.
These files list the atoms in each protein, and their 3D location in space. They are available in several
formats (PDB, mmCIF, XML). A typical PDB file contains a text that describes the protein, citation
information, and the details of the structure solution, followed by the sequence and a list of the atoms
and their coordinates. The PDB files can be viewed directly using a text editor. Online tools, such as
the ones on the RCSB PDB website, allow to search and explore the information under the PDB header,
including information on experimental methods and the chemistry and biology of the protein (Fig. 7).
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Figure 7. Query results at the PDB

The structure files may be viewed using one of several free and open source computer programs,
including Jmol, Pymol, VMD, and Rasmol. Other non-free, shareware programs include ICM-Browser,
MDL Chime, UCSF Chimera, Swiss-PDB Viewer, StarBiochem (a Java-based interactive molecular
viewer with integrated search of protein databank), Sirius, and VisProt3DS (a tool for Protein
Visualization in 3D stereoscopic view in anaglyph and other modes), and Discovery Studio. The RCSB
PDB website contains an extensive list of both free and commercial molecule visualization programs
and web browser plugins, as shown in Figure 8.
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Figure 8. Viewing a PDB file using a browser plug-in

Depositing Data into the Public Databases
In addition to downloading information from the public databases, you may also submit your
own results.

GenBank Deposition

Deposition of sequences to GenBank has been made extremely simple by NCBI. Users
depositing only a few sequences can use the web-based Banklt tool, which is a self-explanatory form-
based interface accessible from the GenBank main page at NCBI. NCBI has recently established two
special submission paths: EST sequences should be submitted through dbEST, rather than to GenBank,
and genome survey sequences through dbGSS.

PDB Deposition

Deposition of structures to the PDB are done using the wwPDB OneDep System that integrates
data validation software with the deposition process so that the user can receive feedback on data quality
during the deposition process. wwPDB OneDep System is tied in with the curation tools the PDB uses
to prepare structure data for inclusion in the data bank.
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Finding Software

Bioinformatics is a broad field, attracting researchers from many disciplines, and articles about
new research developments in bioinformatics are widely distributed in the literature. If you're looking
for cutting-edge developments, journals such as Bioinformatics, Nucleic Acids Research, Journal of
Molecular Biology, and Protein Science often publish papers describing innovations in computational
biology methods.

If you're looking for proven software for a particular application, there are a number of reliable
web resource lists that link to computational biology software sites. Most of the major biological
databases have software resource listings and the necessary motivation to keep their listings up-to-date.
The PDB links to the best free software packages for macromolecular structure refinement,
visualization, and dynamics. EXPASy and NCBI portals provide links to many tools for protein and
DNA sequence analysis.

Judging the Quality of Information

The ability to judge the quality of information and software will improve as you continue to
learn the field. One of the first things to consider when evaluating software, data, or information found
on the Internet is the source. If you don't know the authors presenting the information by reputation,
search for information about their affiliation and credentials available on the web site. Their expertise
related to the topic or purpose of the web site is also important. An individual academic researcher's
site doesn't always have the same need to be all-inclusive as a publicly funded database does. There is
nothing inherently wrong with these offerings, but you should be aware of whether or not they are
comprehensive, whether all their features are available to the casual user, and why.

Even data and software from national or international public sites are not necessarily entirely
correct. It has been estimated that any given sequence in GenBank is likely to contain at least one error.
While these errors generally don't render the data meaningless, it's always best to be aware of such
issues even when using top-of-the-line public resources. Like any other software you find on the Web,
software offered by public agencies such as NCBI and the PDB may still be under development. You
can use this software, and much of it is of good quality. If you're basing your research on a beta version
(a version still under development) of a software package, just read the documentation carefully so that
you know what problems still remain to be worked out.
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Introduction

The idea of using sequence alignment is to find and compare pairs of related sequences. Biologically
interesting problems, however, often involve comparing more than two sequences at once. BLAST or
FASTA search can yield a large number of sequences that match the query. One approach to compare all
these resulting sequences with each other is to perform pairwise alignments of all pairs of sequences, then
study these pairwise alignments individually. 1t's more efficient (and easier to comprehend), however, if you
compare all the sequences at once, then examine the resulting ensemble alignment. This process is known
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as multiple sequence alignment. Multiple sequence alignments can be used to study groups of related genes
or proteins, to infer evolutionary relationships between genes, and to discover patterns that are shared among
groups of functionally or structurally related sequences.

Multiple Sequence Alighnment

Multiple sequence alignment techniques are generally applied to protein sequences. They are used
for both evolutionary and structural similarity search among the proteins encoded by each sequence in the
alignment. The proteins with closely related functions are similar in both sequence and structure from
organism to organism. However, that sequence tends to change more rapidly than structure in the course of
evolution. In multiple alignments generated from sequence data alone, regions that are similar in sequence
are usually found to be superimposable in structure as well.

Progressive Strategies for Multiple Alignment

A common approach to multiple sequence alignment is to progressively align pairs of sequences.
This strategy can be described as follows: a starting pair of sequences is selected and aligned, then each
subsequent sequence is aligned to the previous alignment. Like the Needleman - Wunsch and Smith-
Waterman algorithms for sequence alignment, progressive alignment is an instance of a heuristic algorithm.
It decomposes a problem into pieces, then choose the best solution to each piece without paying attention
to the problem as a whole. In the case of progressive alignment, the overall problem (alignment of many
sequences) is decomposed into a series of pairwise alignment steps.

Because it is a heuristic algorithm, progressive alignment isn't guaranteed to find the best possible
alignment. However, it is efficient and produces biologically meaningful results. The methods used differ
in several respects: how they choose the initial pair of sequences to align, whether they align every
subsequent sequence to a single cumulative alignment or create subfamilies, and how they score individual
alignments and alignments of individual sequences to previous alignments.

Multiple Alignment with Clustal Omega

One commonly used program for progressive multiple sequence alignment is . The
heuristic used in Clustal Omega is based on phylogenetic analysis. First, a pairwise distance matrix for all
the sequences to be aligned is generated, and a guide tree is created using the neighbor-joining algorithm.
Then, each of the most closely related pairs of sequences are aligned to each other. Next, each new alignment
is analyzed to build a sequence profile. Finally, alignment profiles are aligned to each other or to other
sequences until a full alignment is built.

This strategy produces reasonable alignments under a range of conditions. For example, it's not
guaranteed for distantly related sequences. Pairwise sequence alignment by dynamic programming is very
accurate for closely related sequences regardless of which scoring matrix or penalty values are used. Using
multiple sequences to create profiles increases the accuracy of pairwise alignment for more distantly related
sequences.

There are several parameters involved in multiple sequence alignment - scoring matrices and gap
penalties associated with the pairwise alignment steps, weighting parameters that alter the scoring matrix
used in sequence-profile and profile-profile alignments. In Clustal Omega, these are set from the Set your
parameters menu (Fig. 1).
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The pairwise alignment parameters are familiar and have the same meaning in multiple alignment
as they do in pairwise alignment. The multiple alignment parameters include gap opening and gap extension
penalties for the multiple alignment process—to be used when fine-tuning alignments—and a maximum
allowable delay, in terms of sequence length, for the start of divergent sequences at the beginning of the
alignment.

One of Clustal Omega’s heuristics is that, in protein sequence alignment, different scoring matrices
are used for each alignment based on expected evolutionary distance. If two sequences are close neighbors
in the tree, a scoring matrix optimized for close relationships aligns them. Distant neighbors are aligned
using matrices optimized for distant relationships. Thus, when prompted to choose a series of matrices in
the Multiple Alignment Parameters menu, it means just that: use BLOSUMG62 for close relationships and
BLOSUMA45 for more distant relationships, rather than the same scoring matrix for all pairwise alignments.

Input form  ERUEEEVE | Help & Documentation ‘ Bioinformatics Tools FAQ ‘ ® Feedback | =<eShare
Toals = Multiple Sequence Alignment > Clustal Omega

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile technigues to generate alignments between three
or more sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.
STEP 1 - Enter your input sequences

Enter or paste a set of

PROTEIN v

sequences in any supported format:

Or, upload a file: Browse... See example inputs

STEP 2 - Set your parameters

QUTPUT FORMAT

ClustalW with character counts v

DEALIGN INPUT SEQUENCES MBED-LIKE CLUSTERING GUIDE-TREE MBED-LIKE CLUSTERING ITERATION NUMBER of COMBINED ITERATIONS
[ I 1T 1T

Fig. 1. Clustal Omega multiple sequence alignment program

Sequence Logos

A way to view sequence alignments, and one which has become quite popular recently, is the
sequence logo format. This format is especially good for shorter sequence regions, such as protein motifs.
Consensus sequences represent each position in an alignment with the residue that is most commonly found
in that position. Sequence logos, as illustrated in Figure 2, are a graphical way to represent relative

frequencies, information content, order of substitution preference, and other characteristics of each site in
an alignment.
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Bits

Bits

Created by Seq2Logo

Figure 2. A sequence logo

The software for creating sequence logos is part of a larger group of programs called the DELILA
package. You actually need only two of the many DELILA programs (alpro and makelogo) to create logos
from aligned sequences. An easier approach for the novice is to use the . Aligned
sequences can be submitted to this server in FASTA alignment format.

Phylogenetic Analysis

One of the applications of the multiple sequence alignment is the phylogenetic inference.
Phylogenetic inference is the process of developing hypotheses about the evolutionary relatedness of
organisms based on their observable characteristics.

While hand-drawn trees of life may branch according to what is essentially an artist's conception of
evolutionary relationships, modern phylogenetic trees are strictly binary. Accordingly, at any branch point,
a parent branch splits into only two daughter branches. Binary trees can approximate any other branching
pattern, and the assumption that trees are binary greatly simplifies the tree-building algorithms.

The length of branches in a quantitative phylogenetic tree can be determined in more than one way.
For example, the evolutionary distance between pairs of sequences is one way to assign branch length.

While a phylogeny of species generally has a root, assuming that all species have a specific common
ancestor, a phylogenetic tree derived from sequence data may be rooted or unrooted. It isn't too difficult to
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calculate the similarity between any two sequences in a group and to determine where branching points
belong. It is much harder to pinpoint which sequence in such a tree is the common ancestor, or which pair
of sequences can be selected as the first daughters of a common ancestor. While some phylogenetic
inference programs do offer a hypothesis about the root of a tree, most simply produce unrooted trees. Figure
3 and Figure 4 illustrate rooted and unrooted phylogenetic trees.

Figure 3. A rooted phylogenetic tree

Figure 4. An unrooted phylogenetic tree

A phylogeny based on sequence alignment may be a tree, and it may describe a biological entity, but
it takes far more than a single evolutionary analysis to draw conclusions about whole-organism phylogeny.
Sequence-based phylogenies are quantitative. When they are built based on sufficient amounts of data, they
can provide valuable, scientifically valid evidence to support theories of evolutionary history. However, a
single sequence based phylogenetic analysis can only quantitatively describe the input data set. It isn't valid
as a quantitative tool beyond the bounds of that data set.

It has been shown, by comparative analysis of phylogenies generated for different protein and gene
families, that one protein may evolve more quickly than another, and that a single protein may evolve more
quickly in some organisms than in others. Thus, the phylogenetic analysis of a sequence family is most
informative about the evolution of that particular gene. Only by analysis of much larger sets of data can
theories of whole-organism phylogeny be suggested.

Phylogenetic Trees Based on Pairwise Distances
One of the easiest algorithms for tree drawing is the pairwise distance method. This method produces
a rooted tree. The algorithm is initialized by defining a matrix of distances between each pair of sequences
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in the input set. Sequences are then clustered according to distance, in effect building the tree from the
branches down to the root.

Distances can be defined by more than one measure, but one of the more common and simple
measures of dissimilarity between DNA sequences is the Jukes-Cantor distance, which is logarithmically
related to the fraction of sites at which two sequences in an alignment differ. The fraction of matching
positions in an ungapped alignment between two unrelated DNA sequences approaches 25%. Consequently,
the Jukes-Cantor distance is scaled such that it approaches infinity as the fraction of unmatched residue pairs
approaches 75%.

The pairwise clustering procedure used for tree drawing (UPGMA, unweighted pair group method
using arithmetic averages) is intuitive. Each sequence is assigned to its own cluster, and a branch of the tree
Is started for that sequence at height zero in the tree. Then, the two clusters that are closest together in terms
of whatever distance measure has been chosen are merged into a single cluster. A branch point (or node) is
defined that connects the two branches. The node is placed at a height in the tree that reflects the distance
between the two branches that have been joined. This process is repeated iteratively, until there are only two
clusters left. When they are joined, the root of the tree is defined. The branch lengths in a tree constructed
using this process theoretically reflect evolutionary time.

Phylogenetic Trees Based on Neighbor Joining

Neighbor joining is another distance matrix method. It eliminates a possible error that can occur
when the UPGMA method is used. UPGMA produces trees in which the branches that are closest together
by absolute distance are placed as neighbors in the tree. This assumption places a restriction on the topology
of the tree that can lead to incorrect tree construction under some conditions.

In order to get around this problem, the neighbor-joining algorithm searches not just for minimum
pairwise distances according to the distance metric, but for sets of neighbors that minimize the total length
of the tree. Neighbor joining is the most widely used of the distance-based methods and can produce
reasonable trees, especially when evolutionary distances are short.

Phylogenetic Trees Based on Maximum Parsimony

A more widely used algorithm for tree drawing is called parsimony. Parsimony is related to a
principle that states the simplest explanation is probably the correct one. Parsimony searches among the set
of possible trees to find the one requiring the least number of nucleic acid or amino acid substitutions to
explain the observed differences between sequences.

The only sites considered in a parsimony analysis of aligned sequences are those that provide
evolutionary information — that is, those sites that favor the choice of one tree topology over another. A
site is considered to be informative if there is more than one kind of residue at the site, and if each type of
residue is represented in more than one sequence in the alignment. Then, for each possible tree topology,
the number of inferred evolutionary changes at each site is calculated. The topology that is maximally
parsimonious is that for which the total number of inferred changes at all the informative sites is minimized.
In some cases there may be multiple tree topologies that are equally parsimonious.

As the number of sequences increases, so does the number of possible tree topologies. After a certain
point, it is impossible to exhaustively enumerate the scores of each topology. A shortcut algorithm that finds
the maximally parsimonious tree in such cases is the branch-and-bound algorithm. This algorithm
establishes an upper bound for the number of allowed evolutionary changes by computing a tree using a fast
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or arbitrary method. As it evaluates other trees, it throws out any exceeding this upper bound before the
calculation is completed.

Phylogenetic Trees Based on Maximum Likelihood Estimation

Maximum likelihood methods also evaluate every possible tree topology given a starting set of
sequences. Maximum likelihood methods are probabilistic. They search for the optimal choice by assigning
probabilities to every possible evolutionary change at informative sites, and by maximizing the total
probability of the tree. Maximum likelihood methods use information about amino acid or nucleotide
substitution rates, analogous to the substitution matrices that are used in multiple sequence alignment.

Software for Phylogenetic Analysis
There is a variety of phylogenetic analysis software available for many operating systems. One of
the most extensively is the

PHYLIP

The phylogenetic analysis package PHYLIP contains 30 programs that implement different
phylogenetic analysis algorithms. Each of the programs runs separately, from the command line. By default,
most of the programs look for an input file called infile and write an output file called outfile. Rather than
entering parameters via command-line flags, as with BLAST, the programs have an interactive text interface
that prompts you for information.

The following are frequently used the PHYLIP programs:

PROTPARS
Infers phylogenies from protein sequence input using the parsimony method

PROTDIST

Computes an evolutionary distance matrix from protein sequence input, using maximum likelihood
estimation

DNAPARS

Infers phylogenies from DNA sequence input using parsimony

DNAPENNY

Finds all maximally parsimonious phylogenies for a set of sequences using a branch-and-bound
search

DNAML
Infers phylogenies from DNA sequence input using maximum likelihood estimation
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DNADIST

Computes a distance matrix from DNA sequence input using the Jukes-Cantor distance or one of
three other distance criteria

NEIGHBOR

Infers phylogenies from distance matrix data using either the pairwise clustering or the neighbor
joining algorithm

DRAWGRAM
Draws a rooted tree based on output from one of the phylogeny inference programs

DRAWTREE
Draws an unrooted tree based on output from one of the phylogeny inference programs

CONSENSE
Computes a consensus tree from a group of phylogenies

RETREE
Allows interactive manipulation of a tree by the user—not based on data

PHYLIP is a flexible package, and the programs can be used together in many ways. To analyze a
set of protein sequences with PHYLIP, you can:
1. Read a multiple protein sequence alignment using PROTDIST and create a distance matrix.
2. Input the distance matrix to NEIGHBOR and generate a phylogeny based on neighbor joining.
3. Read the phylogeny into DRAWTREE and produce an unrooted phylogenetic tree.

Or, you can:
1.  Read a multiple sequence alignment using PROTPARS and produce a phylogeny based on
parsimony.

2. Read the phylogeny using DRAWGRAM and produce a rooted tree.

Each of the PHYLIP programs is thoroughly documented in the *.doc files available with the
PHYLIP distribution. This documentation has been converted into HTML by several groups.
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Generating input for PHYLIP with Clustal Omega

The multiple sequence alignment program Clustal Omega draws phylogenetic trees with the
neighbor joining method. Perhaps more importantly, it can read sequences in various input formats and then
write PHYLIP - format files from multiple sequence alignments.

Profiles and Motifs

In addition to studying relationships between sequences, one of the most successful applications of
multiple sequence alignments is in discovering novel, related sequences. This profile- or motif-based
analysis uses data derived from multiple alignments to construct and search for sequence patterns.

Multiple sequence alignments can span the full sequence of the proteins involved or a single region
of similarity, depending on their purpose. Multiple sequence alignments, such as the one shown in Figure
5, are generally built up by iterative pairwise comparison of sequences and sequence groups, rather than by
explicit multiple alignment.
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Figure 5. A multiple sequence alignment, shown using Clustal Omega

A sequence motif is a locally conserved region of a sequence, or a short sequence pattern shared by
a set of sequences. The term "motif" most often refers to any sequence pattern that is predictive of a
molecule's function, a structural feature, or family membership. Motifs can be detected in protein, DNA,
and RNA sequences, but the most common use of motif-based analyses is the detection of sequence motifs
that correspond to structural or functional features in proteins. Motifs are generated from multiple sequence
alignments and can be displayed as patterns of amino acids (such as those in the ) or as
sequence logos.

Motifs can be created for protein families, or sets of proteins whose members are evolutionarily
related. Protein families can consist of many proteins that range from very similar to quite diverse. A
sequence profile is a quantitative or qualitative method of describing a motif. A profile can be expressed in
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its most basic form as a list of the amino acids occurring at each position in the motif. Position-specific
scoring matrix (PSSM) is used when detecting a motif. Unlike a standard scoring matrix, the first dimension
of the matrix is the length of the motif; the second dimension consists of the 20 amino acid possibilities. For
each position in the matrix, there is a probability score for the occurrence of each amino acid. Most methods
for developing position-specific scoring matrices normalize the raw probabilities with respect to a standard
scoring matrix such as BLOSUM®62.

Motif Databases

As profiles and other consensus representations of sequence families can be used to search sequence
databases, it is no surprisingly that there are motif databases that can be searched using individual sequences.
Motif databases contain representations of conserved sequences shared by a sequence family and their main
use is in annotation of unknown sequences.

Motifs are generated by a variety of methods and with different aims. Some rely on automated
analysis, but there is often a large amount of hands-on labor invested in the database by an expert curator.
Because they store only those motifs that are present in reasonably large families, motif databases are small
relative to GenBank, and they don't reflect the extent of the protein structure or sequence databases. An
unsuccessful search against a motif database doesn't mean your sequence contains no detectable pattern. It
could be part of a family that has not yet been curated or that doesn't meet the criteria of the particular
pattern database you've searched. For proteins that do match defined families, a search against the pattern
databases can yield a lot of homology information very quickly.

Blocks

, a service of the Fred Hutchinson Cancer Research Center, is an automatically generated
database of ungapped multiple sequence alignments that correspond to the most conserved regions of
proteins. Blocks is created using a combination of motif-detection methods, beginning with a step that
exhaustively searches all spaced amino acid triplets in the sequence to discover a seed alignment, followed
by a step that extends the alignment to find an aligned region of maximum length. The Blocks database
provides several useful search services, including IMPALA (which uses the BLAST statistical model to
compare a sequence against a library of profiles) and LAMA (Local Alignment of Multiple Alignments a
program for comparing an alignment of your own sequences against a database of Blocks).

PROSITE

is an expert-curated database of patterns hosted by the Swiss Institute of Bioinformatics.
PROSITE uses a single consensus pattern to characterize each family of sequences. Patterns in PROSITE
are carefully selected based on data published in the primary literature or on reviews describing the
functionality of specific groups of proteins. PROSITE contains pattern information as well as position-
specific scoring matrices that can detect new instances of the pattern.

Pfam

is a database of alignments of protein domain families. Pfam a curated database of over 2,700
gapped profiles, most of which cover whole protein domains. Its entries are generated automatically by
applying a clustering method. Pfam entries begin with a seed alignment, a multiple sequence alignment that
the curators are confident is biologically meaningful and that may involve some manual editing. From each
seed alignment, a profile hidden Markov model is constructed and used to search a nonredundant database
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of available protein sequences. A full alignment of the family is produced from the seed alignments and any
new matches. This process can be repeated to produce more extensive families and detect remote matches.
Pfam entries are annotated with information extracted from the scientific literature, and incorporate
structural data when available (Fig. 6).

HOME SEARCH BROWSE | FTP | HELP ABOUT l ‘nm

| oo ]

Family: Catalase (PF00199) - i & = - J
S5 architectures 5410 sequences 6 interactions 2516 species 415 Structures

e : .
Summary Summary: Catalase
Domain organisation

pfam includes annotations and ad

nd additional family information from a range of different sources. These sources can be accessed via the tabs below

Alignments

HMM logo

Trees

Wik
Curation & model Catalase LA

Species

Interactions

Structures External database links
Jump to... ¥ HOMSTRAD: cat®
enter IVacc m PRINTS:

PROSITE:
SCoP:

_. Pfam is part of the ELIXIR

Fig. 6. Pfam entries representation

PRINTS-S

is a database of protein motifs similar to PROSITE, except that it uses "fingerprints"
composed of more than one pattern to characterize an entire protein sequence. Motifs are often short relative
to an entire protein sequence. In PRINTS, groups of motifs found in a sequence family can define a signature
for that family.

COG

(COG) database is a different type of pattern database. COG
is constructed by comparing all the protein sequences encoded in the complete sequenced genomes. Each
cluster must consist of protein sequences from at least three separate genomes. The principle of COG is that
proteins that are conserved across these genomes from many diverse organisms represent ancient functions
that have been conserved throughout evolution. COG entries can be accessed by organism or by functional
category from the NCBI web site.

Accessing multiple databases

When analyzing a new sequence it is recommendable to use as many as possible motif databases.
Blocks uses InterPro as one of the sources for its own patterns and contains only ungapped patterns, at the
same time profiles contained in Pfam and PROSITE are gapped. Thus keeping track of the best matches
from each database, their scores, and (if available) the significance of the hit, will provide more profound
information on the performed analysis.
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One service that allows integrated searching of many motif databases is the European Bioinformatics
Institute's Integrated Resource of Protein Domains and Functional Sites (InterPro). InterPro allows you to
compare a sequence against all the motifs from Pfam, PRINTS, ProDom, and PROSITE. InterPro motifs
are annotated with the name of the source protein, examples of proteins in which the motif occurs, references
to the literature, and related motifs (Fig. 7).

V. InterPro

Protein sequence analysis & classification

Examples: IPRO20405, kinase, P51587, PF02932, GO:0007165

Home Search Release notes Download About InterPro Help Contact

overview Submitted sequence Export &
Similar proteins
Length 154 amino acids
Filter view on Protein family membership
Entry type -@ Superoxide dismutase (Cu/Zn) / superoxide dismutase copper chaperone (IPR024134)
[2) Homologous superfamily .
@Faniy Homologous superfamilies

(1) Domains » superfamily
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Qs Domains and repeats

DDDDDDD
Status

@ Unintegrated Detailed signature matches

@ IPR036423 Superoxide dismutase-like, copper/izinc binding domain superfamily

Per-residue features

Residue annotation

@ IPR0O24134  Superoxide dismutase (Cu/Zn) / superoxide dismutase copper chaperone

Colour by [ IPROD1424 Superoxide dismutase, copper/zine binding domain

— -— —— e——— > PRO00GS (CUZNDISMTASE)

Fig. 7. Structure of InerPro database

Constructing and Using Your Own Profiles

Motif databases are useful when looking for protein families that are already well documented.
However, if a new motif is found and it is intended to be used in GenBank search, or to look for patterns,
it’s necessary to build an own profiles. Several software packages and servers are available for motif
discovery - a process of finding and constructing your own motifs from a set of sequences. The simplest
way to construct a motif is to find a well-conserved section out of a multiple sequence alignment. A number
of programs are commonly used to search for and discover motifs, like Block Maker, MEME and HMMer.

Incorporating Motif Information into Pairwise Alignment

Multiple sequence information can optimize pairwise alignments. The BLAST package contains two
new modes that use multiple alignment information to improve the specificity of database searches. These
modes are accessed through the blastpgp — a program used to run PSI-BLAST and PHI-BLAST. The last
are specialized protein BLAST comparisons that are more sensitive than the standard BLASTP search.

Position Specific Iterative BLAST (PSI-BLAST) is an enhancement of the original BLAST program
that implements profiles to increase the specificity of database searches. Starting with a single sequence,
PSI-BLAST searches a database for local alignments using gapped BLAST and builds a multiple alignment
and a profile the length of the original query sequence. The profile is then used to search the protein database
again, seeking local alignments. This procedure can be restated any number of times. One caution of using

16 |Page


http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/

ALIGNMENTS AND PHYLOGENETIC TREES /ADVANCED LEVEL/

PSI-BLAST is that you need to know where to stop. Errors in alignment can be magnified by iteration,
giving rise to false positives in the ultimate sequence search. The NCBI PSI-BLAST server is probably the
optimal way to run a PSI-BLAST search.

Pattern Hit Initiated BLAST (PHI-BLAST) takes a sequence and a preselected pattern found in that

sequence as input to query a protein sequence database. The pattern must be expressed in PROSITE syntax,
which is described in detail on the PHI-BLAST server site. PHI-BLAST can also initiate a series of PSI-
BLAST iterations, and can be a standalone program or a (vastly more user-friendly) web server.
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Comparative genome analysis

The first complete genome sequences of living organism have become available not long ago. In 1995,
the genomes of the first two bacteria, Haemophilus influenzae and Mycoplasma genitalium, were
reported. One year later, the first archaeal (Methanococcus jannaschii) and the first eukaryotic (yeast
Saccharomyces cerevisiae) genomes were completely sequenced. Next, in 1997 the sequencing of the
genomes of the two best-studied bacteria, Escherichia coli and Bacillus subtilis was done. Many more
bacterial and archaeal genomes, as well as the genomes of a multicellular eukaryotes, like the nematode
Caenorhabiditis elegans, have been sequenced since then.

An outstanding outcome of these first genome projects is that at least one-third of the genes encoded
in each genome had no known or predictable function. The prediction of the general function for many
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of the remaining genes have been appeared possible. The depth of our ignorance becomes particularly
obvious on examination of the genome of Escherichia coli K12, debatably the most extensively studied
organism among both prokaryotes and eukaryotes. Even in this well-known model organism of
molecular biologists, at least 40% of the genes have unknown function. On the other hand, it turned out
that the level of evolutionary conservation of microbial proteins is rather uniform, with ~70% of gene
products from each of the sequenced genomes having orthologs in distant genomes. Thus, the functions
of many of these genes can be predicted simply by comparing different genomes and by transferring
functional annotation of proteins from better-studied organisms to their orthologs from lesser-studied
organisms. This makes comparative genomics a powerful tool for achieving a better understanding of
the genomes and, subsequently, of the biology of the respective organisms.

Progress in genome sequencing

By the beginning of 2000, genomes of 23 different unicellular organisms (5 archaeal, 17 bacterial, and
1 eukaryotic) had been completely sequenced. Up to 2018 thousands of microbial and eukaryotic
genomes were in different stages of completion with respect to sequencing. Periodically updated lists
of both finished and unfinished publicly funded genome sequencing projects are available in the
. A complete list of sequencing centers world-wide can be found at the
. One can retrieve the actual sequence data from the NCBI FTP site or from the FTP
sites of each individual sequencing center. A convenient sequence retrieval system is maintained also
at the . In the framework of the , NCBI
has started to increase the lists of gene products with some valuable sequence analysis information,
such as the lists of best hits in different taxa, predicted functions for uncharacterized gene products,
frame-shifted proteins, etc. On the other hand, sequencing centers like regularly updates their
sequence data, correct some of the sequencing errors and, accordingly, their sites may contain more
recent data on unfinished genome sequences.

General-Purpose Databases for Comparative Genomics

Because the Web makes genome sequences available to anyone with Internet access, there exists a
variety of databases that offer more or less convenient access to basically the same sequence data.
However, several research groups, specializing in genome analysis, maintain databases that provide
important additional information, such as operon organization, functional predictions, three-
dimensional structure, and metabolic reconstructions.
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PEDANT

This useful Web resource provides answers to most standard questions in genome comparison.

provides an easy way to ask simple questions, such as finding out how many proteins in H.
pylori have known (or confidently predicted) three-dimensional structures or how many NAD*-
dependent alcohol dehydrogenases (EC 1.1.1.1) are encoded in the C. elegans genome. The list of
standard PEDANT queries includes EC numbers, PROSITE patterns, Pfam domains, BLOCKS, and
SCOP domains, as well as PIR keywords and PIR superfamilies (Fig.1.). Although PEDANT does not
allow the users to enter their own queries, the variety of data available at this database makes it a
convenient entry point into the field of comparative genome analysis.

File Information Search Help 2 .
g @,’3: biomax
s S biomax informatics ag
=¥ gHelicobacter pylori P12

=1 il Contigs

[3 List of Contigs -

(3 List of Contigs with Genes 2173 entries found

3 Contig Information n
=155 Genes and Genetic Elements — _— : - - — —

[ List of Genes and Genetic Elements [FRININERN — = s i =N IS

- (F;'Ote") i’i‘mding Genes IPR026020 1 (p)ppGpp synthetase

= é-;lalous efe e IPR004552 1 1-acyl-sn-glycerol-3-phosphate acyltransferase

[3 Gene and Genetic Element Groups IPR003821 1 1-deoxy-D-xylulose 5-phosphate reductoisomerase
T }3':1’;’?&2:;"26 “?n IPRO13644 1 1-deoxy-D-xylulose 5-phosphate reductoisomerase, C-terminal

[3 GO categories i IPR013512 1 1-deoxy-D-xylulose 5-phosphate reductoisomerase, N-terminal
| =ée/:r;t:rpro motifs (SIMAP Features) i IPR0O11961 1 16S rRNA processing protein RimM

[ Best self match (blastp) i IPR022711 1 2'3'-cyclic-nucleotide 2'-phosphodiesterase, N-terminal

B gg: S:::I 288 IPR003526 1 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
41 “@ Protein Structure IPR020555 1 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, conserved site
8- $¢ Protein Location IPR001228 1 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase

IPR004136 1 2-nitropropane dioxygenase, NPD
IPR011898 1 2-oxoacid:acceptor oxidoreductase, delta subunit,
pyruvate/2-ketoisovalerate
Fig. 1. Helicobacter pylori P12 in PENDANT database
COGs
The (COGs) database has been intended to simplify evolutionary

studies of complete genomes and improve functional projects of individual proteins. It consists of more
than 4,800 conserved families of proteins (COGs) from each of the completely sequenced genomes.
Each COG contains orthologous sets of proteins from at least three phylogenetic lineages, which are
assumed to have evolved from an individual ancestral protein. By definition, orthologs are genes that
are connected by vertical evolutionary descent (the ‘‘same’’ gene in different species) as opposed to
paralogs—genes related by duplication within a genome. Because orthologs typically perform the same
function in all organisms, delineation of orthologous families from diverse species allows the transfer
of functional annotation from better-studied organisms to the lesser-studied ones. The protein families
in the COG database are separated into 25 functional groups that include a group of uncharacterized
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yet conserved proteins, as well as a group of proteins for which only a general function prediction only
has been performed (Fig.2). This site is particularly useful for functional predictions in disputed cases,
where protein similarity levels are fairly low. Due to the diversity of proteins in COGs, sequence
similarity searches against the COG database can often suggest a possible function for a protein that
otherwise has no clear database hits.

o

Functional categories
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700 763 C0Ge@1g8 3J Arginyl-tRNA synthetase PECEEEEEEEE R PP PR PP TP e e =11
620 1110 (C0Gee19 E Diaminopimelate decarboxylase R I FECCEEEE==T0EEEEEE T L= TP EEErr LT
688 823 (C0Gee2e I Undecaprenyl pyrophosphate synthase FECEEEEEREEEEEEE PR EE R R R PR P L E T
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Fig.2. Bacteroides thetaiotaomicron VPI-5482 functional categories in GOG

KEGG

The (KEGG) is focused on cellular metabolism. This
database presents a comprehensive set of metabolic pathway charts, both general and specific, for each
of the completely-sequenced genomes, as well as for Schizosaccharomyces pombe, Arabidopsis
thaliana, Drosophila melanogaster, mouse, and human. Enzymes that are already identified in a
particular organism are color-coded, so that one can easily trace the pathways that are likely to be
present or absent in a given organism (Fig. 3). For the metabolic pathways covered in KEGG, lists of
orthologous genes that code for the enzymes participating in these pathways are also provided. It is also
indicated whenever these genes are adjacent, forming likely operons. A very convenient search tool
allows the user to compare two complete genomes and identify all cases in which conserved genes in
both organisms are adjacent or located relatively close (within 5 genes) to each other. The KEGG site
is continuously updated and serves as an ultimate source of data for the analysis of metabolism in
various organisms.
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Fig. 3. Metabolic pathway chart of glycerophospholipid metabolism

(MBGD) offers another convenient tool for comparative analysis of

completely sequenced microbial genomes, the number of which is now growing rapidly (Fig. 4). Here,
the homology relationships are based only on sequence similarity (BLASTP values of 1072 or less).
MBGD permits to submit several sequences at once (up to 2,000 residues) for searching against all of
the completely sequenced genomes. The result is displayed as color-coded functions of the detected
homologs, and shows their location on a circular genome map. The output of MBGD’s BLAST search
also shows the degree of overlap between the query and target sequences. For each sequenced genome,
MBGD provides convenient lists of all recognized genes that are involved in a particular function, e.g.,
the biosynthesis of branched-chain amino acids or the degradation of aromatic hydrocarbons.
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MBGD is a database for comparative analysis of completely sequenced microbial genomes, the number of which is now growing rapidly. The aim of MBGD is to facilitate
comparative genomics from various points of view such as ortholog identification, paralog clustering, motif analysis and gene order comparison.
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Fig. 4. MBGD database

Organism-Specific Databases

In addition to general genomics databases, exist a variety of databases for particular organism or a
group of organisms. Although all of them are useful for specific purposes, those devoted to E. coli, B.
subtilis, and yeast are probably the ones most widely used for functional assignments in other, less
studied organisms.

Escherichia coli. The importance of E. coli for molecular biology is reflected in the large number of
databases dedicated to this organism. One of them is maintained at the

, the research groups that carried out the actual sequencing of the E. coli genome (Fig. 5). The
Wisconsin group is also involved in sequencing the enteropathogenic E. coli O157:H7 and other
enterobacteria, so their database is also very useful for analysis of enteric pathogens. Another useful
database on E. coli, It lists all experimentally studied E. coli genes and provides
comprehensive coverage of the metabolic pathways identified in E. coli. The aim of another E. coli
database, , IS to provide an integrated protein interaction database for a high quality
functional interaction dataset of E. coli proteins together with experimental datasets generated through
tandem affinity purification screens.. Finally, and are the databases of choice for
those interested in regulatory networks of E. coli. The (CGSC) Web site
also provides gene and function information.
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E. coli Genome Project

University of Wisconsin -

) Sequencing Projects
) Functional Genomics
) Blast & ASAP Database
) Resources

€, Publications

, Employment

©, AboutUs

Madison

UW E. coli Genome Project Overview

We sequenced the E. coli K-12 genome, and
continue to maintain and update its annotation.
We created knockouts of many genes, archive
clones of many ORFs, and an extensive gene
expression data set under a variety of
physiological conditions. These data sets are
made available freely to the community.

We also sequenced six additional
enterobacterial strains which are pathogens
related to E. coli K-12, and many plasmids. The
comparative genomics aim of this effort is to
characterize the gene pool of horizontally
transferred elements and virulence determinants
known as the pathosphere.

The ASAP database, developed in
collaboration with Nicole Perna, is a platform for
community sharing of annotation information
and data which is made available for
downloading by the community.

What's New

Raw data (CEL files) for several publications
now available for download.

Now hosting Supplementary Online Material
from Gerdes et al. (2003), courtesy of Dr.

Svetlana Gerdes.

May 22, 2018 11th Annual Oliver Smithies
Symposium Madison, Wi

June 7-11, 2018 ASM Microbe 2018 Atlanta,
GA

August 6-10, 2018 2018 Molecular Genetics
of Bacteria and Phages Meeting Madison, W/

September 16-20, 2018 Lake Arrowhead
Microbial Genomics Conference Lake
Arrowhead, CA

In Memoriam

Fig.5. E.coli Genome Project

Mycoplasma genitalium. Mycoplasma has the smallest genome of all known cellular life forms, which
offers some hints as to what is the lower limit of genes necessary to sustain life (the ‘‘minimal
genome”’’). Its comparison to the second smallest known genome, that of Mycoplasma pneumoniae, is
available online. Recent data from \VEDE provides insight into the range of Mycoplasma genes that can
be mutated without loss of viability (Fig. 6). From both computational analysis and mutagenesis studies,
it appears that 250-300 genes are absolutely essential for the survival of mycoplasmas.
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Acinetobacter

Aeromonas
Ana?lasma General information:
Bacillus » The smallest and simplest self-replicating bacteria. Over 190 species are
Bartonella known, widely distributed among human, animals, insects and plants
Bordetella » Mycoplasmas have an extremely small genome (0.58-2.20Mb). The smallest
Brucella genome of a self-replicating organism known at present is the genome of
P Mycoplasma genitalium (0.58Mb)

» Owing to their limited biosynthetic capabilities, most mycoplasmas are
Campylobacter By B 5 i 2 T

parasites exhibiting strict host and tissue specificities
Chlamydia » Usually cause chronic diseases and persist intheir host for extended periods
Clostridium after infection
Corynebacterium Characteristics:

» Large scale horizontal gene transfer
» Gene families encoding proteins displayed on the surface with reiterated

Coxiella

Enterococcus sequences in their promoter or coding regions are highly mutable due to sip
Escherichia strand mispairing and have been reported in a number of Mycoplasma species.
Haemophilus ttominntive cathicoendiict):

Helicobacter » M. agalactiae PG2, 877438 bp, NC_009497

Legionella » M. arthritidis 158L3-1, 820453 bp, NC_011025

Fots » M. capricolum subsp. capricolum ATCC 27343, 1010023 bp, NC_007633
— » M. conjunctivae HRC/S81, 846214 bp, NC_012806

Hycons » M. fermentans JER, 977524 bp, NC_014552

Fig. 6. Mycoplasma Genome Database at VFDB

Bacillus subtilis. The B. subtilis genome also attracts considerable attention from biologists and, like
that of E. coli, is being actively studied from the functional perspective. The SubtiList World-Wide
Web Server, maintained at the Institute Pasteur, is constantly updated to include the most recent
information on functions of new B. subtilis genes. In addition, a DETES contains comprehensive
database of the transcriptional regulation in Bacillus subtilis and contains upstream intergenic
conservation information.

Saccharomyces cerevisiae. The major databases specifically devoted to the functional analysis of yeast
S. cerevisiae genome is the Saccharomyces Genome Database (SGD) (Fig. 7). It provides regurally
updated lists of yeast proteins with known or predicted functions, appropriate references, and mutant
phenotypes and reflect the ongoing efforts aimed at complete characterization of all yeast proteins.
SGD is probably the largest and most comprehensive source of information on the current status of the
yeast genome analysis and includes the Saccharomyces Gene Registry.

Other useful sites for yeast genome analysis include Saccharomyces cerevisiae Promoter Database,
listing known regulatory elements and transcriptional factors in yeast; and the Saccharomyces Cell
Cycle Expression Database, presenting the first results on changes in mRNA transcript levels during
the yeast cell cycle.
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Genome analysis and annotation

One of the limiting steps in the most genome projects are the sequence analysis and annotation of the
complete genomes. This task is particularly discouraging given the lack of functional information for
a large number of genes even in the best-understood model organisms. The standard stages involved in
the structural-functional annotation of uncharacterized proteins includes:

v' sequence similarity searches using programs such as BLAST, FASTA, or the Smith-Waterman
algorithm;

v"identifying functional motifs and structural domains by comparing the protein sequence against
PROSITE, BLOCKS, SMART, or Pfam;

v’ predicting structural features of the protein, such as likely signal peptides, transmembrane
segments, coiled-coil regions, and other regions of low sequence complexity; and

v’ generating a secondary (and, if possible, tertiary) structure prediction.

All these steps have been automated in several software packages, such as

, , and others. Of these, however, MAGPIE and PEDANT do not allow out3|de users
to submit their own sequences for analysis and display only the authors’ own results. GeneQuiz offers
a limited number of searches (up to 100 a day) to general users but is still a good entry point for
comparative genome analysis. It relies on unrealistically high cutoff scores to deduce homology, which
results in relatively low sensitivity. One such package that is currently available for free downloading
is SEALS, developed at NCBI. It consists of a number of UNIX-based tools for retrieving sequences
from GenBank, running database search programs such as BLAST, viewing and analyzing search
outputs, searching for sequence motifs, and predicting protein structural features. A similar package,
called Imagene, has been developed at Universite” Paris VI.

Genome Comparison for Prediction of Protein Functions

Analysis of the first sequenced bacterial, archaeal, and eukaryotic genomes using the sequence
comparison methods failed to predict protein function for at least one-third of gene products in any
given genome. In these cases, other approaches can be used that take into consideration all other
available data, putting them into ‘‘genome context’’. These approaches rely on the same basic principle,
that the organization of the genetic information in each particular genome reflects a long history of
mutations, gene duplications, gene rearrangements, gene function divergence, and gene acquisition and
loss that has produced organisms uniquely adapted to their environment and capable of regulating their
metabolism in accordance with the environmental conditions. In this respect the cross-genome
similarities can be assumed as meaningful in the evolutionary sense and thus are potentially useful for
functional analysis. The most applicable comparative methods specifically employ information derived
from multiple genomes thus achieving reliability and sensitivity that are not easily attainable with
standard tools. Some of these new approaches are briefly reviewed below.
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Transfer of Functional Information

The simplest and the most common way to exploit the information embedded in multiple genomes is
the transfer of functional information from well-characterized genomes to poorly-studied ones.
Indirectly, this is done through making a prediction for a newly sequenced gene on the basis of a
database hit(s). There are, however, many pitfalls that tend to hamper accurate functional prediction on
the basis of such hits. The most important ones relate to the lack of sufficient sensitivity, leading to
error broadcast. Main reasons for that are due to the dependence on incorrect or imprecise annotations
already present in the databases, and the difficulty in distinguishing orthologs from paralogs. The issue
of orthology vs. paralogy is critical because transfer of functional information could be assumed as
reliable for orthologs (direct evolutionary counterparts) but may not be quite consistent for the paralogs
(products of gene duplications). All these problems are, in part, avoided in the COG system, which
consists of carefully annotated sets of likely orthologs and does not rely on arbitrary cutoffs for
assigning new proteins to them.

The COGs can be employed for annotation of newly-sequenced genomes using the COGNITOR
program. This program allocates new proteins to COGs by comparing them to protein sequences from
all genomes included in the COG database and detecting genome-specific best hits (BeTs). When three
or more BeTs fall into the same COG, the query protein is considered a likely new COG member. The
requirement of multiple BeTs for a protein to be assigned to a COG serves, to some extent, as a
safeguard against the propagation of errors that might be present in the COG database itself. Indeed, if
a COG contains one or even two false-positives, this will not result in a false assignment by
COGNITOR under the three-BeT cutoff rule.

Phylogenetic Patterns (Profiles)

The COG-type analysis applied to multiple genomes provides for the root of phylogenetic patterns,
which are potentially useful in many aspects of genome analysis and annotation. The phylogenetic
pattern for each protein family (COG) is defined as the set of genomes in which the family is
represented. The COG database is accompanied by a pattern search tool that allows the user to select
COGs with a particular pattern. On this basis, tit is considered that the genes that are functionally related
presumably have the same phylogenetic pattern. Because of these features, phylogenetic patterns can
be used to improve functional predictions in complete genomes. When a particular genome is
represented in the COGs for a subset of components of a particular complex or pathway but is missing
in the COGs for other components, a focused search for the latter is justified. The same applies to cases
in which a gene is found in one of two closely related genomes, but not the other.

Use of Phylogenetic Patterns for Differential Genome Display

The phylogenetic pattern approach and, specifically, the pattern search tool associated with the COGs
can be used to perform systematic logical operations (AND, OR, NOT) on gene sets — an approach

15| Page



OMICS AND SYSTEM BIOLOGY /ADVANCED LEVEL/

called “‘differential genome display’’. This type of genome comparison permits to delineate subsets of
gene products that are likely to contribute to the specific characteristics of the studied organisms, for
example, thermophily. The use of this approach is of particular interest when identifying candidate drug
targets in pathogenic bacteria. It seems logical to look for such targets among those genes that are
shared by several pathogenic organisms, but are missing in eukaryotes. On the other hand, it is
appealing to suggest that the best targets for new broad-spectrum antimicrobial agents would be genes
that are shared by all pathogenic microbes, but not by any other organisms. However, such genes do
not seem to exist. In this respect, it seems that the best solution when searching for such potentially
universal antimicrobial agents is to isolate the genes that are present in most of the pathogens, but not
in eukaryotes.

Study of Gene (Domain) Fusions

Another recently developed comparative genomic approach involves systematic analysis of protein and
domain fusion (and fission). The basic hypothesis is that fusion would be maintained by selection only
when it facilitates functional interaction between proteins, for example, kinetic coupling of consecutive
enzymes in a pathway. Thus, proteins that are fused in some species can be expected to interact, perhaps
physically or at least functionally, in other organisms. A straightforward example of functional
inferences that can be drawn from domain fusion is seen in the histidine biosynthesis pathway, which
in E. coli and H. influenzae includes two two-domain proteins, Hisl and HisB. The two domains of Hisl
catalyze two consecutive steps of histidine biosynthesis and thus represent subunits that are likely to
physically interact even when produced as separate proteins. In contrast, the two domains of HisB
catalyze the seventh and ninth steps of the pathway and hence are not likely to physically interact. The
COG database includes about 700 distinct multidomain architectures. Thus, using domain fusion for
functional prediction has considerable empirical potential although this approach will not work for
“‘promiscuous’’ domains such as, for example, the DNA-binding helix-turn-helix domain, which can
be found in combination with a wide variety of other domains.

In addition, several databases have recently been developed for detecting domains and exploring
architectures of multidomain proteins: Pfam, ProDom, and SMART.

From all of them, seems to be the most advanced, combining high sensitivity of domain
detection with accuracy, high speed, and extremely informative presentation of domain architectures.
Rapid searches for protein domains, based on a modification of the PSI-BLAST program is now also
available through the (CDD) at NCBI.

Analysis of Operons

An approach that is conceptually similar to the analysis of gene fusions, but is more general, involves
systematic analysis of gene ‘‘neighborhoods’ in genomes. Because functionally linked genes
frequently form operons in bacteria and archaea, gene adjacency may provide important functional
suggestions. However, many functionally related genes never form operons, and, in many instances,
adjacent genes are not connected in any way. Due to the lack of overall conservation of gene order in
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prokaryotes, the presence of a pair of adjacent orthologous genes in three or more genomes or the
presence of three orthologs in a row in two genomes can be considered a statistically meaningful event
and can be used to infer potential functional interaction for the products of these genes. The simplest
current tool for identification of conserved gene strings in any two genomes is available as part of
KEGG. It allows the user to select any two complete genomes (e.g., B. burgdorferi and R. prowazekii)
and look for all genes whose products are similar to each other and are located within a certain distance
from each other (for example, separated by 0-5 genes). The results are displayed in a graphical format
illustrating the gene order and the presumed functions of gene products. The conservation of gene
position in phylogenetically distant bacteria suggests a functional connection.

Application of comparative genomics—reconstruction of
metabolic pathways

To illustrate the genome analysis tools discussed above, a reconstruction of the glycolytic pathway in
the archaeon Methanococcus jannaschii is presented. Metabolic reconstruction is one of the crucial
final steps of all genome analyses and a convergence point for the data produced by different methods.
Glycolysis is one of the central pathways of cellular biochemistry as it becomes obvious from a cursory
exploration of the general scheme of biochemical pathways, available in the interactive form on the
KEGG Web site (Fig. 8).
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Fig. 8. Glycolysis in KEGG

The names of all the enzymes and metabolites on this map are hyperlinked and searchable. The enzyme
names are hyperlinked to the enzyme information. It lists the names and catalyzed reactions, the official
Enzyme Commission (EC) numbers, whether or not their protein sequences are known. Thus, clicking
on the name ‘‘hexokinase” will bring up the corresponding page (Fig. 9).
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Fig. 9. Hexokinase information

Error Propagation and Incomplete Information in Databases

Sequence databases are predisposed to error propagation, whereby wrong annotation of one protein
causes multiple errors as it is used for annotation of new genomes. Furthermore, database searches have
the potential for noise amplification, so that the original annotation could have involved a minor
inaccuracy or incompleteness, but its transfer on the basis of sequence similarity worsens the problem
and eventually results in outright false functional assignments. These aspects of sequence databases
make the common practice of assigning gene function on the basis of the annotation of the best database
hit (or even a group of hits with compatible annotations) highly error-prone. Although time- and labor-
consuming, the adequate genome annotation requires that each gene be considered in the context of
both its phylogenetic relationships and the biology of the respective organism, hence the rather
disappointing performance of automated systems for genome annotation. There are numerous reasons
why functional annotation may be wrong in the first place, but two main groups of problems are due to
the database search methods and to the complexity and diversity of the genomes themselves.
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False Positives and False Negatives in Database Searches

It is usual in genome annotation to use a cutoff for ‘statistically significant’’ database hits. It can be
expressed in terms of the false-positive expectation (E) value for the BLAST searches and is set
routinely at values such as E = 0.001 or E = 10°. The problem with this approach is that the distribution
of similarity scores for evolutionarily and functionally relevant sequence alignments is very broad and
that a considerable fraction of them fail the E-value cutoff, resulting in undetected relationships and
missed opportunities for functional prediction (false negatives). On the contrary, spurious hits may
have E-values lower than the cutoff, resulting in false positives. The latter is most frequently caused by
compositional bias (low-complexity regions) in the query sequence and in the database sequences.
Clearly, there is a trade-off between sensitivity (false-negative rate) and selectivity (false-positive rate)
in all database searches, and it is particularly difficult to optimize the process in genome-wide analyses.
There is no simple decision to circumvent these problems. To minimize the false-positive rate,
appropriate procedures for filtering low-complexity sequences are critical. Filtering using the SEG
program is the default for Web-based BLAST searches, but additional filtering is justified for certain
types of proteins. For example, filtering of predicted nonglobular domains using SEG with specifically
adjusted parameters and filtering for coiled-coil domains using the COILS2 program is one way to
minimize the false positive rate. Minimizing the false-negative rate (that is, maximizing sensitivity) is
an open-ended problem. It should be kept in mind that a standard database search (e.g., using BLAST)
with the protein sequences encoded in the given genome as queries is insufficient for an adequate
annotation. To increase the sensitivity of genome analysis, it should be supplemented by other, more
powerful methods such as screening the set of protein sequences from the given genome with preformed
profile libraries.

Genome, Protein, and Organismal Context as a Source of Errors

As discussed above, protein domain architecture, genomic context and an organism’s biology may
serve as sources of important, even if indirect, functional information. However, those same context
features, if misinterpreted, may become one of the major sources of error and confusion in genome
annotation. Standard database search programs are not equipped with the means to clearly address the
implications of the multidomain organization of proteins. Therefore, unless specialized tools such as
SMART or COGs are employed and/or the search output is carefully examined, assignment of the
function of a single-domain protein to a multidomain homolog and vice versa becomes frequent in
genome annotation. For example, mobile domains could cause chaos in the annotation process, as
demonstrated, for example, by the proliferation of ‘‘IMP-dehydrogenase-related proteins’’ in several
genomes. In reality, most or all of these proteins (depending on the genome) share with IMP
dehydrogenase the mobile CBS domain but not the enzymatic part.

As discussed above, it is also critical for reliable genome annotation that the biological context of the
given organism is taken into account. For example, it is undesirable to annotate archaeal gene products
as nucleolar proteins, even if their eukaryotic homologs are correctly described as such. As a general

21| Page



OMICS AND SYSTEM BIOLOGY /ADVANCED LEVEL/

guide to functional annotation, it should be kept in mind that current methods for genome analysis,
even the most powerful and sophisticated of them, facilitate, but do not replace the work of a human
expert.

Final remarks

With an increasing number of complete genome sequences becoming available and specialized tools
for genome comparison being developed, the comparative approach is becoming the most powerful
strategy for genome analysis. It seems that the future should belong to databases and tools that
consistently organize the genomic data according to phylogenetic, functional, or structural principles
and explicitly take advantage of the diversity of genomes to increase the resolution power and
robustness of the analysis. Many tasks in genome analysis can be automated, and, given the rapidly
growing amount of data, automation is critical for the progress of genomics. This being said, the
ultimate success of comparative genome analysis and annotation critically depends on complex
decisions based on a variety of inputs, including the unique biology of each organism. Therefore, the
process of genome analysis and annotation taken as a whole is, at least at this time, not automatable,
and human expertise is necessary for avoiding errors and extracting the maximum possible information
from the genome sequences.
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Health Bioinformatics

includes the integration of computers, software tools, and databases in an effort to
address biological questions. Bioinformatics approaches are often used for major initiatives that generate large
data sets. Two important large-scale activities that use bioinformatics are genomics and proteomics. Genomics
refers to the analysis of genomes. A genome can be thought of as the complete set of DNA sequences that codes
for the hereditary material that is passed on from generation to generation. These DNA sequences include all of
the genes (the functional and physical unit of heredity passed from parent to offspring) and transcripts (the RNA
copies that are the initial step in decoding the genetic information) included within the genome. Thus, genomics
refers to the sequencing and analysis of all of these genomic entities, including genes and transcripts, in an
organism. Proteomics, on the other hand, refers to the analysis of the complete set of proteins or proteome. In
addition to genomics and proteomics, there are many more areas of biology where bioinformatics is being applied
(i.e., metabolomics, transcriptomics). Each of these important areas in bioinformatics aims to understand
complex biological systems.

Many scientists today refer to the next wave in bioinformatics as systems biology, an approach to tackle
new and complex biological questions. Systems biology involves the integration of genomics, proteomics, and
bioinformatics information to create a whole system view of a biological entity.

For instance, how a signaling pathway works in a cell can be addressed through systems biology. The
genes involved in the pathway, how they interact, and how modifications change the outcomes downstream, can
all be modeled using systems biology. Any system where the information can be represented digitally offers a
potential application for bioinformatics. Thus, bioinformatics can be applied from single cells to whole
ecosystems. By understanding the complete “parts lists” in a genome, scientists are gaining a better
understanding of complex biological systems. Understanding the interactions that occur between all of these
parts in a genome or proteome represents the next level of complexity in the system. Through these approaches,
bioinformatics has the potential to offer key insights into our understanding and modeling of how specific human
diseases or healthy states manifest themselves.
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Translational bioinformatics

, afield in the study of health informatics that emerged after the first human
genome mapping, focuses on the convergence of molecular bioinformatics, biostatistics, statistical genetics and
clinical informatics. The field is evolving at a tremendously fast pace, and many related areas have been
proposed. Amongst them, pharmacogenomics is a branch of genomics concerned with individuals’ variations to
drug response due to genetic differences. The area is important for designing precision medicine in future.
Though a relatively young field, translational bioinformatics has become an important discipline in the era of
personalized and precision medicine.

According to the American Medical Informatics Association (AMIA), translational
bioinformatics (TBI) is “the development of storage, analytic, and interpretive
methods to optimize the transformation of increasingly voluminous biomedical

data, and genomic data, into proactive, predictive, preventive, and participatory
health”.
(http://www.amia.org/applications-informatics/translational-bioinformatics)

Bridge basic science

% and clinical practice
Translational Data

Transform data into

bioinformatics integration Human knowledge
i disease
Model emergent
Pharmacology molecular bahevoir

Figure 1. Translational Bioinformatics.

A 2014 review article categorized recent themes in the field of TBI into four major categorizations:

1. clinical ‘‘big data”, or the use of electronic health record (EHR) data for discovery
(genomic and otherwise);

2. genomics and pharmacogenomics in routine clinical care;

3. omics for drug discovery and repurposing; and

4. personal genomic testing, including a number of ethical, legal, and social issues that

arise from such services.

The importance of may be best understood in the things it is teaching us,
things not previously knowable. For example, it is identifying flawed science, improving estimates of relative
pathogenicity of human genetic variants, inferring new insights about underlying genetic mechanisms of disease,
and identifying promising new drug indications based on curating large volumes of scientific literature. While,
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sequencing an exome for a clinical diagnosis can be a routine task, the interpretation of the data to make an
actual diagnosis or treatment plan is much more complex. Out of the many thousands of variants identified,
many of them will have to be evaluated for their clinical utility. At times, for perhaps a simple Mendelian disorder
this may be as simple, as only a single variant will need to be identified and considered. But for more complex
diseases (e.g. cancers, diabetes, or neurodegenerative diseases) multiple variants will need to be identified. It is
only by asking the correct questions about the patient and the disease, along with employing the right
computational tools that correct answers can be achieved.

New discoveries, resulting from the , are now frequently applied to develop
improved diagnostics, prognostics, and therapies for complex diseases, which is known as “translational
genomics”. In particular, the sequencing cost per genome has markedly reduced over the last decade, according
to the data presented by the National Institutes of Health (NIH) Human Genome Research Institute as shown in
Figure 2. This further gives rise to new opportunities for personalized treatment and risk stratification.
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Figure 2. a) Number of research studies sequencing DNA or genomes (source: PubMed, Web of Science,
Scopus, IEEE, ACM). b) Sequencing cost per human-sized genome (source: National Human Genome Research
Institute, NHGRI). Total volume of genomic data per year reported by completed studies for c) eukaryotes and

d) prokaryotes in 1e2 GB (source: National Center for Biotechnology Information) (Andreu-Perez, Poon, et al.
2015).

On the other hand, research in bioinformatics has broadened from solely sequencing the genome of an
individual to also measuring epigenomic data (i.e., above the genome), which include processes that alter gene
expression other than changes of primary DNA sequences, such as DNA methylation and histone modifications.
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Information technologies for acquiring and analyzing biological molecules other than the genome, for example,
transcriptome (the total mMRNA in a cell or organism), proteome (the set of all expressed proteins in a cell, tissue,
or organism), and metabolome (the total quantitative collection of low molecular weight compounds,
metabolites, present in a cell or organism that participate in metabolic reactions) are also needed for future
advances in the field. To summarize, aims at collectively characterizing and quantifying groups of
biological molecules that translate into the structure, function, and dynamics of an organism. The OMICS profile
of each individual should eventually be linked up with phenotypes obtained from clinical observations, medical
images, and physiological signals (see Figure 3).

Clinical observation
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Figure 3. Outline of the “OMICS” approach for studying disease mechanisms. OMICS aims at
collectively characterizing and quantifying groups of biological molecules that translate into the structure,
function, and dynamics of an organism. The OMICS profile of each individual, including the genome,
transcriptome, proteome, and metabolome, should be eventually linked up with phenotypes obtained from
clinical observations, medical images, and physiological signals. Different acquisition technologies are required
to collect data at each biological level. Interaction within each level and across different levels as well as with
the environment, including nutrition, food, drugs, traditional Chinese medicine, and gut microbiome presents
grand challenges in future bioinformatics research.
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Figure 4. Practical model for the design and execution of translational informatics projects, illustrating
major phases and exemplary input or output resources and data sets (Payne et al. 2009).

Genomics in clinical care (Translational Genomics)

While genetics focuses on DNA coding for single functional genes, genomics is the study of the entirety
of our DNA, recognizing the crucial regulatory role of non-coding DNA and the complex interactions between
multiple genes and the environment. Genomics is fundamental to precision medicine which, through its four
components of predictive, preventive, personalized, and participatory medicine, aims to promote wellness as
well as to more precisely treat disease. Currently, there is a great amount of genomic discovery research
occurring that includes new genomic variants, biomarkers and other basic science discoveries. Thus, many
foresee rapid advances in genetic testing and genome sequencing over the next decade, with inevitable
implementation into clinical practice.

GPs will play an important role within a genomics medicine service both in supporting patients through
diagnostic and treatment processes and in using knowledge of genomics for disease prevention. Also, decreasing
costs and increased availability of genetic testing and genome sequencing mean many physicians will consider
using these services over the next few years, with some projecting that sequencing will become fully integrated
into standard medical care within 10 years.

A tumour’s genomic signature may be used to make a precise diagnosis, enabling more accurate
prognosis and better tailored treatment. Examples include Herceptin® (trastuzumab) in breast cancer treatment
and BRAF inhibitors in malignant melanoma. Treatment can also be based on germline genomic information;
PARP inhibitors are more efficacious in the treatment of ovarian cancer in individuals who carry a BRCA gene
mutation.

Although comprehensive genotyping is still relatively recent, it has a high potential for genetic
stratification in patient screening, for instance, in the case of factors arising from genotyping, such as high-risk
DNA mutations, milk and gluten intolerance, and muscovisciosis. Genetics combined with phenotypic
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information provided by EHR may help to provide greater insights into low penetrant alleles. For example, it is
well known that mutations of fibrillin 1 (FBN1) cause MFS. Nevertheless, the etiology of the disease leads to
marked clinical variability of MFS patients of the same family as well as different families. Combining genetic
tests of FBN1 and a series of related genes (TGFBR1, TGFBR2, TGFB2, MYH11, MYLK1, SMAD3, and
ACTAZ2) will help to screen out patients who are more likely to develop aortic aneurysms that lead to dissections.
Further studies on these high-risk patients based on morphological images of the aorta may provide insight into
the rate of disease development.

Another potential area for translational genomics is to study the gene networks of different syndromes
of the same person in order to better understand how these syndromes are interrelated. For example, this has
been used to study different genes on chromosome 21 (HSA21) and their role in Down’s Syndrome (DS), as
well as to understand the underlying reason why nearly half of DS patients exhibit an overprotection against
cardiac abnormalities related to the connective tissue. One hypothesis is based on the recent evidence that there
is an overall upregulation of FBNL1 in DS (which is normally down regulated in MFS). The construction of
genetic networks will, therefore, provide a clearer picture of how these syndromes are related. By understanding
the gene networks of the related syndromes, it may be possible to provide specific gene therapy for the related
diseases.

Another took place at Stanford’s Lucile Packard Children’s Hospital, where a newborn
presented with a condition known as long QT syndrome. In this specific case, the manifestation was unusually
severe-the baby’s heart stopped multiple times in the hours after its birth. Long QT syndrome can be caused by
mutations in a number of different genes. It is necessary to know which gene harbors the mutation in order to
know how to treat the condition. In this case, a whole-genome sequencing (WGS) was performed enabling
identification of a previously-studied mutation, as well as a novel copy number variation in the TTN gene that
would not otherwise have been detectable through targeted genotyping alone. Moreover, NGS enabled the
answer to be obtained in a matter of hours to days instead of weeks.

Pharmacogenomics

Pharmacogenomics can be defined as the study of how genetic factors affect a person’s response to
drugs. This relatively new field combines pharmacology (the science of drugs) and genomics (the study of genes
and their functions) to develop effective, safe medications and doses that will be tailored to a person’s genetic
makeup.

Many drugs that are currently available are “one size fits all,” but they don't work the same way for
everyone. It can be difficult to predict who will benefit from a medication, who will not respond at all, and who
will experience negative side effects (called adverse drug reactions). Adverse drug reactions are a significant
cause of hospitalizations and deaths. Once a patient takes a drug, the drug must travel through the body to its
target(s), act on its target(s), and then leave the body. The first and last of these processes is facilitated by
pharmacokinetic (PK) genes, which may affect a drug in the ‘““ADME”’ processes: to be absorbed into and
distributed through the body, metabolized (either to an active form or broken down into an inactive form), and
excreted. With the knowledge gained from the Human Genome Project, researchers are learning how inherited
differences in genes affect the body’s response to medications. These genetic differences will be used to predict
whether a medication will be effective for a particular person and to help prevent adverse drug reactions.

Pharmacogenomics focuses on the identification of genome variants that influence drug effects, typically
via alterations in a drug’s pharmacokinetics or via modulation of a drug’s pharmacodynamics (e.g., modifying a
drug’s target or perturbing biological pathways that alter sensitivity to the drug’s pharmacological effects). For
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diseases other than cancer and infectious diseases, the genome variations of interest are primarily in the germline
DNA, either inherited from parents or de novo germline sequence changes that alter the function of gene
products. In cancer, both inherited genome variations and somatically acquired genome variants can influence
response to anticancer agents.

Whole genome sequencing by NGS is important to the study of complex diseases such as cancer. It has
been a long-standing problem in cancer treatment that drugs often have heterogeneous treatment responses even
for the same type of cancer, and some drugs only show profound sensitivity in a small number of patients.
Currently, large-scale personal genomics and pharmacogenomics datasets have been generated to uncover
unique signaling patterns of individual patients and discover drugs that target these unique patterns. These
include cancer cell line databases of nonspecific cancer cell types or a specific cancer cell type such as breast
cancer. The Cancer Genome Atlas Project of the NIH has tested the personal genomic profiles of over 10000
individuals across over 20 types of cancer and uncovered new cancer subtypes based on those profiles. Patients
with distinct genomics aberrations are believed to be responsible for the variability of drug response. Large-scale
datasets as such can be used to enable drug repositioning, predict drug combinations, and delineate mechanisms
of action. They are becoming an important component in drug development. It is, therefore, possible to design
precision medicine for individual patients based on their genomics profiles.

Pharmacogenomics has gone beyond studying individuals’ drug response based on genome
characteristics (e.g., copy number variations and somatic mutations) and now incorporates additional
transcriptomic and metabolic features such as gene expression, considering factors that influence the
concentration of a drug reaching its targets and factors associated with the drug targets. Since the gene expression
profiles of cell lines are known to vary considerably in the process of prolonged culture under different culture
conditions and techniques, the use of gene expression from cell lines for prediction of drug response in the patient
is currently controversial. A recent algorithm for predicting in vivo drug response with the patient’s baseline
gene expression profile achieved 60%— 80% predictive accuracy for different cases. Other research studied drug
response using immunodeficient mice xenografted with human tumors, which have the advantage of potentially
studying both genetic and nongenetic factors that affect cancer growth and therapy tolerance.

The field of pharmacogenomics is still in its infancy. Its use is currently quite limited, but new
approaches are under study in clinical trials. In the future, pharmacogenomics will allow the development of
tailored drugs to treat a wide range of health problems, including cardiovascular disease, Alzheimer disease,
cancer, HIV/AIDS, and asthma.

Omics for drugs discovery and repurposing

The cost of generating new therapeutics has risen dramatically over the past 60 years, with each new
drug costing about 80-fold more in 2010 than 1960 in inflation-adjusted terms. Also, much has been said about
the protracted process involved in getting a drug through the FDA approval pipeline. Estimates are that the
process can take on average 12 years between lead identification and FDA approval. As a result, many are
investigating high-throughput and computational approaches to drug discovery and repurposing. Recent efforts
have focused on the use of the omics data, especially genomics, to discover new drug targets and search for new
uses for existing drugs, referred to as drug repositioning.

Pharmacogenomics can impact how the pharmaceutical industry develops drugs, as early as the drug
discovery process itself (Figure 5). First, cheminformatics and pathway analysis can aid in the discovery of
suitable gene targets, followed by small molecules as ‘‘leads’’ for potential drugs. Additionally, discovery of
pharmacogenomic variants for the design of clinical trials can allow for safer, more successful passage of drugs
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through the pharmaceutical pipeline. As mentioned previously, cheminformatics methods can be used to identify
novel drug-protein interactions. While these predicted interactions can be used to discover new small molecules
for therapeutic purposes, any new drug must still go through the significant regulatory hurdles of safety and
efficacy testing.

Disease Association and Gene
Expression methods target
a""cs
k€
\S
e

Hit and Animal
Lead Adverse event models and
optimization Phase I

Responder screening

Figure 5. Drug discovery. Pharmacogenomics can be used at multiple steps along the drug discovery
pipeline to minimize costs, as well as increase throughput and safety. First, association and expression methods
can be used to identify potential gene targets for a given disease. Cheminformatics can then be used to narrow
the number of targets to be tested biochemically, as well as identifying potential polypharmacological factors
that could contribute to adverse events. After initials, pharmacogenomics can identify variants that may
potentially affect dosing and efficacy. This information can then be used in designing a larger Phase Il clinical
trial, excluding ‘‘non-responding’’ and targeting the drug towards those more likely to respond favorably.

In addition to the Human Genome Project, several large-scale biological databases launched recently
will further facilitate the study of disease mechanisms and progressions, particularly at the system level as
outlined in Figure 18. The Research Collaboratory for Structural Bioinformatics is a
worldwide archive of structural data of biological macromolecules, providing access to the 3-D structures of
biological macromolecules, as well as integration with external biological resources, such as gene and drug
databases. ProteomicsDB is another example, encompassing mass spectrometry of the human proteome acquired
from human tissues, cell lines, and body fluid to facilitate the identification of organ-specific proteins and
translated long intergenic noncoding RNAs, with due consideration of time-dependent expression patterns of
proteins.
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Parallel to these developments, the Human Metabolome Database consists of more than 40000 annotated
metabolites entries in the latest version released in 2013. It provides both experimental metabolite concentration
data and analyses through mass spectrometry and Nuclear Magnetic Resonance (NMR) spectrometry. Databases
as such are believed to greatly facilitate the translation of information into knowledge for transforming clinical
practice, particularly for metabolic-related diseases, such as diabetes and coronary artery diseases. In fact,
metabolomics has emerged as an important research area that does not only include endogenous metabolites of
the human body but also chemical and biochemical molecules that can interact with the human body.
Specifically, ongoing efforts have been placed for fingerprinting metabolites from food and nutrition products,
drugs, and traditional Chinese medicine, as well as molecules produced by the gut bacterial microbiota. These
will eventually help us to better understand the interaction between the host, pathogen and environment.

The availability of the genomic, proteomic, and metabolic databases allows a better understanding of
the development of complex diseases such as cancer. They also allow the search of new biomarkers using
different pattern mining and clustering techniques. The clusters can be either partitional (hard) or hierarchical
(tree-like nested structure). Using multicore CPU, GPU, and field-programmable gate arrays with parallel
processing techniques can further accelerate these methods.

In two linked papers, Dudley et al. and Sirota et al. created disease signatures from microarray data in

and compared these to gene expression data from Connectivity Map to identify

potentially novel therapeutics for lung cancer and inflammatory bowel disease. A similar study using this

method, noted that tricyclic antidepressants might have efficacy against small cell lung cancer (but not non-small
cell lung cancer).

Drug repurposing refers to taking an existing, already on the market, FDA-approved compound and
using it to treat a disease or condition other than the one for which it was originally intended. In the past,
inspiration for this type of ‘‘off label use” has been largely serendipitous. For example, Viagra was initially
aimed at treating heart disease, and turned out to be useful for erectile dysfunction. By using a pre-approved
compound, early phase clinical trials can be avoided, which can save significant time and money.

Disease-gene association data may also predict drug targets. Sanseau et al. evaluated existing GWAS
hits and found that genes related to GWAS hits are significantly more likely to be targetable by small molecules
or by biologic agents than other genomic regions, and that 15.6% of GWAS genes are existing drug targets
(compared to 5.7% of the general genome). In support of this hypothesis, Okada et al. performed a multi-ethnic
GWAS of 103,638 cases and controls for rheumatoid arthritis (RA) and noted 101 total RA risk loci; these loci
identified 18 of 27 current RA drug target genes, and identified three approved cancer medications that may be
active against RA. Khatri et al. analyzed eight existing organ transplant rejection datasets and found a common
module of 11 genes overexpressed in all rejected organs. Using these genes, they identified two existing non-
immunosuppressant drugs that could be repurposed to regulate these genes and demonstrated enhanced effect in
a mouse model. Resources such as the (DGI), which integrates data from 13
databases, and may facilitate translation of genomic study results to potential therapeutics. See the
Table below for a listing of TBI resources.

Finally, an increasing collection of available computational and experimental methods that leverage
molecular and clinical data enable diverse drug repositioning strategies. Integration of translational
bioinformatics resources, statistical methods, chemoinformatics tools and experimental techniques (including
medicinal chemistry techniques) can enable the rapid application of drug repositioning on an increasingly broad
scale. Efficient tools are now available for systematic drug-repositioning methods using large repositories of
compounds with biological activities. Medicinal chemists along with other translational researchers can play a
key role in various aspects of drug repositioning.
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Table 1. Public resources available for Translational Bioinformatics.

Name

URL

Pharmacogenomic http://www.fda.gov/drugs/

Biomarkers in
Drug Labels

PharmGKB

Clinical
Pharmacogenetics
Implementation
Consortium
(CPIC)

Phenotype
Knowledgebase

NHGRI Catalog
of GWAS studies

Catalog of
PheWAS results

Drug-Gene
Interaction
database

My Cancer
Genome

ClinVarise!

SHARPN

scienceresearch/researchareas/

pharmacogenetics/ucm083378.htm

http://www.pharmgkb.org

http://mwww.pharmgkb.org/page/cpic

http://phekb.org

http://www.genome.gov/26525384

http://phewascatalog.org

http://dgidb.genome.wustl.edu

http://www.mycancergenome.org

http://mwww.ncbi.nlm.nih.gov/clinvar/

http://phenotypeportal.org

Comments

Lists FDA-approved drugs with
pharmacogenomic information in their
drug labels.

PharmGKB is a curated resource about
the impact of genetic variation on drug
response for clinicians and researchers.

Provides a list of the published
guidelines for drug-gene interactions
produced by CPIC.

Online collaborative repository for
building, validating, and sharing
electronic phenotype algorithms and
their performance characteristics.

Curated list of GWAS studies, their
phenotypes, and key results.

Searchable, downloadable catalog of
EHR PheWAS results.

Provides a search interface into drug-
gene interactions from data derived
from 13 resources.

Provides up-to-date data regarding
cancer mutations, treatments, and
relevant clinical trials.

It provides up-do-date relationships
among human variations and
phenotypes along with supporting
evidence.

Collection of computable phenotype
algorithms generated by SHARPN.
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Personalized genomic testing

Personalized medicine has become important as a means to help patients receive the best possible
outcomes while reducing adverse effects and high direct medical costs if a treatment will not benefit the patient.

Genetic and genomic tests each have a place in personalized medicine. Genetic tests typically focus on
a specific, known gene, while genomic tests, whole-genome sequencing (WGS), focus on expression and
interaction of groups of genes. Genetic tests concentrate on the presence or absence of mutations, or
overexpression, of individual genes, while genomic tests provide gene signature profiles based on expression
levels of specific component genes. Examples of genetic tests include BRCA-1 and -2 in breast cancer, EGFR
in non-small cell lung cancer, and BRAF in melanoma. Examples of genomic tests include the Oncotype DX
assays in breast, colon, and prostate cancers, and the 70-gene assay in breast cancer. Since WGS was first
developed, advances in technology have made the test easier, quicker, and less expensive. So easy, in fact, that
it could become a routine test offered to healthy patients during primary care visits. However, it can be difficult
to determine what the results of WGS mean.

What is genetic testing? k!

el

Genetic testing is the analysis of human DNA, RNA, or proteins to detect gene variants, changes in
chromosomes, or proteins associated with certain diseases or conditions; non-diagnostic uses include paternity
testing and forensics. The results of a genetic test can confirm or rule out a suspected genetic condition or help
determine a person’s chance of developing or passing on a genetic disorder. More than 1,000 genetic tests are
currently in use, and more are being developed.

Genetic testing methodology varies:

- Molecular genetic tests study single genes or short lengths of DNA to identify variations or
mutations that lead to a genetic disorder.

- Chromosomal genetic tests analyze whole chromosomes or long lengths of DNA to detect large
genetic changes such as an extra copy of a chromosome.

- Finally, biochemical genetic tests study the amount or activity level of proteins; abnormalities
in either can indicate changes to the DNA that result in a genetic disorder.

The Figure 6 summarizes the various applications of genetic testing available today. Genetic testing is
voluntary, and it has benefits as well as limitations and risks. Thus, the decision about whether to be tested is a
personal and complex one. A geneticist or genetic counselor can help by providing information about the pros
and cons of the test and discussing the social and emotional aspects of testing.

The last decade has seen an unprecedented pace of advancement in our ability to sequence the genome.
As the cost of sequencing decreases, the opportunity to move from targeted sequencing to whole exome
sequencing (the analysis of all a person’s genes) and then to whole genome sequencing that analyzes a person’s
entire genetic code becomes more accessible, particularly for researcher.
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oIt is used just after birth to identify recessive genetic

) disorders that can be treated early in life.

Newborn screening eExamples: Phenylketonuria, cystic fibrosis, sickle-cell
anaemia, classic galactosemia (GALT), congenital
hypothyroidism.

oIt is used to identify or rule out a specific genetic or
chromosomal condition, for a symptomatic individual,

Diagnostic testing and assist in clinical desicion-making.

eExamples: Skeletal dysplasias, thalassaemias,

niosynostoses.
-f{als Iussé/d %g ?dser?tify asymptomatic individuals who
potentially carry one copy of a recessive gene
= - mutation that, when present in two copies, causes a
Carrier testing genetic disorder.

*Examples: Cystic fibrosis, thalassaemias, Tay-Sachs

dicaaca
oIt is used to detect changes in a fetus's genes or
Prenatal testing chromosomes before birth.
eExamples: spina bifida and Down syndrome.

oIt is used to detect genetic changes, leading to
particular genetic or chromosomal disorder, in
embryos that were created using assisted
TRl active dddfonitptestsgeheamintatityosiektibration.
Sy |y S R be inherited in the family, associated with disorders
Predictive anc_l that appear after birth, often with adult-onset
presymptomatic symptoms.
testing eExamples: Most cancers, cardiovascular disease,
diabetes, Huntington’s disease, haemochromatosis,

e — *This type of testing can identify crime or catastrophe
- - victims, rule out or implicate a crime suspect, or

Forensic teStlng establish biologi(;al relationships between people (for
—_———————————— . é%‘@é?h‘ﬁﬁéﬁrﬁét}%timal drug therapy and dose

Preimplantation
testing

Pharmacogenetics given a person’s metabolic response.
. *DNA tests for likely response to abacavir,
(PGX) testi ng anticoagulant warfarin, carbamazepine, thiopurine

immunosuppressive therapies.

Figure 6. Available types of genetic testing.

Most medical genetic test results will directly change your medical care and those changes are based on
evidence gathered through clinical trials and other medical practice. Medical genetic tests may be used to:

> Diagnose a genetic disease.

Example: Finding changes, called mutations, in a single gene can diagnose such
genetic disorders as familial hypercholesterolemia, muscular dystrophy, Huntington
disease, and other single gene diseases.

> Assess the chance of having a child with certain genetic conditions.

Example: Some genetic conditions are particularly common in people whose ancestors
come from specific areas of the world. People who carry these genetic conditions
usually have no family history and no way to know that they carry a gene that could
cause a genetic condition in their children - like cystic fibrosis, Tay-Sachs disease, or
sickle cell anemia.

16 |Page



HEALTH BIOINFORMATICS

> Predict if a person may be more likely to have side effects or an abnormal response to
a certain drug.

Example: Variations in some genes that direct drug metabolism can cause people to
metabolize, or process, certain drugs faster or slower than usual. Knowing about these
variations may help your doctor avoid drugs that may be problematic for you or choose
the safest, most effective dose of a drug. Examples of drugs for which genetic testing
is in the early stages of usage are blood thinners, psychiatric drugs, and certain types
of cancer chemotherapies.

> Find an increased risk for a common disease.

Example: Some people have a very high risk of a common disease like breast, ovarian,
or colon cancer - often at an earlier age than usual - because of a mutation in a single
gene. The actual risk may depend on the disease and the gene mutation. Knowing
about this very high risk increases the chance that the disease can either be prevented
or caught early when the treatment options are best.

For genomic assays to be a viable tool, they must be accurate and clinically meaningful. As below Table
shows, genomic assays need to have analytic validity, clinical validity, and clinical utility. The analytic validity
is the test’s ability to accurately and reliably measure the genotype (or analyte) of interest in the clinical
laboratory and in specimens representative of the population of interest. Regarding clinical validation, a major
goal is to identify and quantify potential sources of biologic variation in the analysis of a given sample. Clinical
utility is a test’s ability to benefit patients by improving treatment decisions.

Table 2. Evidence Requirements for Genomic Assays:

- Analytical validity: Ability to accurately and reproducibly measure

analyte (or genotype). Does it detect what it is supposed to detect? iste!

L

- Clinical validity: Ability to accurately and reliably predict phenotype,
clinical disease, or predisposition to disease. Does it detect information that is
T

known to be associated with a specific disease? istp

Rl

- Clinical utility: Evidence that guides patient management and affects
decision making, resulting in added value and improved outcomes. How useful
is the information to improve health outcomes?

The rapid evolution of genomic sequencing technologies has decreased the cost of genetic analysis to
the extent that it seems plausible that genome-scale sequencing could have widespread availability in health care
across all stages of life - from preconception to adult medicine (Figure 7). Challenges to fully embracing
genomics in a clinical setting remain, but some approaches are starting to overcome these barriers, such as
community-driven data sharing to improve the accuracy and efficiency of applying genomics to patient care.
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Early analyses comparing genomes of different individuals confirmed the remarkable similarities of
sequence (99% identical), but soon gave way to expectations that the millions of nucleotide differences among
different individuals would enable clinicians to not only recognize each individual’s biologic uniqueness, but to
translate this knowledge into more precise understanding of physiology, more refined diagnoses, better disease
risk assessment, earlier detection and monitoring, and tailored treatments to the individual patient; ie,
personalized (or individualized or precision) medicine.

Case study 2: Sofia is pregnant with her first child. Wanting to do everything to
ensure a healthy newborn, she opts for whole exome-sequencing. The
sequencing results identify pathogenic variants in PKU, which have been
associated with phenylketonuria. Armed with this information, Sofia
immediately begins a low-phenylalanine diet during pregnancy and arranges
for the availability of a special dietary infant formula to avoid neonatal
exposure to phenylalanine. With this treatment plan , the baby is expected to
develop normally and lead a healthy adult life.

Case study 3: Mel has just given birth to a healthy baby girl. She decides to
have her daughter's genome assessed using exome sequencing. This test

e iy i B and Ml e @iy iy o @il arl s reveals two pathogenic variants in CJB2, putting the newborn at risk of hearing

preconception genetic testing. Julie is found to carry seven pathogenic variants
for recessive diseases and Bob is found to carry five. There is one gene, SMN1,
for which both are carriers. This result puts the couple at a 25 % risk of having a
child with spinal muscular atrophy, a progressive muscle-wasting disease. Julie
and Bob decide to pursue prei ion genetic di is to avoid a
pregnancy with an affected fetus by selecting embryos that do not inherit both
pathogenicvariants.

Case study 6: John has watched his father a long end-of-life battle with
Alzheimer disease. Curious about his own risks, he elected to obtain
genetic testing through a direct-to-consumer testing company and learned
that he harbors two copies of the APOEe4 variant, putting him in
heightened risk of Alzheimer disease. He also learned that his ancestral
origin were more diverse then he has previously realized and was able to

loss that can be progressive. Although the child passed a newborn baby
hearing screening test, a diagnostic audiological test reveals mild hearing loss,
often missed in newbom screening. The baby is fitted with hearing aids to
facilitate normal auditory development. The baby’s hearing is monitored
yearly, and if it progresses to profound deafness, the option for cochlear
implantation surgery can be offered to the family.

Case study 4: Joseph has interested to pursuing genomic sequencing to learn
about his own health risks. He ordered a whole-genome sequencing test
through a medical geneticist offering concierge services and discovered that
he harbors a pathogenic variant for hypertonic cardiomyopathy. This finding
prompted a cardiac evaluation, which revealed normal cardiac morphology
and conduction systems; however, a detailed family history assessment
identified suspicion for hereditary sudden cardiac death on his mother’s side

based on unexplained drowning of a sibling and two maternal uncles who
died of heart attacks at 55 and 60 years of age. Given the incomplete
penetrance of hypertonic cardiomyopathy Joseph’s actual risk of disease is
unclear, but with a positive at-risk genotype, he will peruse regular cardiac
evaluations and inform family members of their possible risk.

connect with several distant relatives through an online ancestry portal.

Case study 5: Jessica is seeing a genetic counselor (GC) to discuss her risk of
breast cancer after her grandmother and aunt died of breast cancer and her
mother was recently diagnosed. She brings a copy of her aunt’s laboratory
report from 2008 that notes a pathogenic variant interpretation. Jessica’s GC
quickly looks up the variant in ClinVar and discovers that five clinical
laboratories now interpret the variant as benign, citing more recent evidence
accumulated from clinical testing. The GC suggests her aunt’s testing probably
did not identify the correct cause of disease in her family and suggests that
Jessica’s mother undergo testing to identify another potential cause for
heredity breast cancer that may not have been examined in 2008. if a cause
of breast cancer is found in her mother, Jessica would be able to persue
testing to inform her own risk.

Figure 7. The use of genomics throughout an individual’s lifespan. Case studies of the use of genomics
to inform patient care at different stages of life. (Rehm 2017)

Value of genomics in personalized medicine

Despite the use of DNA diagnostic testing prior to 2000, it has been the exponential increase in our
capacity to perform nucleotide sequencing that has been largely responsible for the relatively recent emphasis
on personalized medicine. Completion of the allowed for selection of genome wide single
nucleotide variants (SNVs) that would tag common variants throughout the genome. This enabled genome-wide
association studies (GWASs) for discovery of loci associated with clinical phenotypes. Advances in next-
generation sequencing (NGS) have reduced the cost and time required for whole exome sequencing (WES) or
whole genome sequencing (WGS), and we are continually improving our capacity for handling the storage,
transfer, and analyses of huge amounts of sequence data. Also, have enabled millions of people to have their
individual genomic sequence analysed, primarily within the settings of research studies or clinical care. There is
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widespread recognition that access to an individual’s genomic sequence and other ‘omics’ data can enable a
more detailed understanding of our health and disease risks, and inform a more precise approach to patient care,
a strategy now commonly called ‘precision medicine’.

With genomic data now increasingly used to guide the individual care of patients, our health care systems
are evolving, although several challenges remain. This Perspective considers how genomics is guiding health
care for the individual, providing illustrative examples of how individuals are taking advantage of personal
genomic information, ranging from advanced diagnostics and tumor profiling to genomic risk assessments.
These examples are then interweavedizwith the day-to-day challenges still facing the integration of genomics
into clinical practice as well as with strategies that are being developed to overcome these barriers and enable
genomics to be a part of ever more aspects of everyday patient care.

Trends in Personal Genomic Testing to Guide Health Care

In 2008 saw the founding of several companies that offered direct-to-consumer (DTC) genetic testing,
reporting on a variety of genes for both health and recreational purposes. Direct-To-Consumer (DTC) genetic
testing through sites such as 23andMe (Mountain View, CA) has provided an avenue for patients to pursue
genetic testing outside of a doctor’s order. Individuals received test results and personalized information on their
genetic ancestry, disease risk, and drug response for selected medications.

DTC genetic testing raises a number of interesting ethical, legal, and social issues. For several years,
there was an open question as to whether or not these tests should be subject to government regulation. In
November 2013, the US FDA ordered 23andMe to stop advertising and offering their health-related information
services. The FDA considered these tests to be ‘‘medical devices” and as such to require formal testing and FDA
approval for each test. In February 2015, it was announced that the FDA had approved 23andMe’s application
for a test for Bloom syndrome (http://www.fda.gov/News
Events/Newsroom/PressAnnouncements/UCMA435003), and in October 2015 it was announced that the company
would once again be offering health information in the form of carrier status for 36 genes. Note that a 23andMe
customer is able to download his or her raw genomic data and to use information from other websites to interpret
the results, including : , ,and for health-related associations.

A more positive example of where genetic testing is helping patients is a case presented at the American
Neurological Association conference in 2014. A patient had a history of Alzheimer’s disease on her mother’s
side of the family. She did not know if she was a carrier, nor did she want to know. But she wanted to ensure
that she did not pass that mutation to her future children. Preimplantation genetic diagnosis (PGD) testing
enabled her doctors to select embryos that did not have that . The patient
herself was never tested, nor was she informed how many (if any) of the embryos contained the mutation.
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Table 3. Examples of personal genetic profiling tests for disease susceptibility.

Company  Example product Details

23andMe Health Edition “Find out if you carry inheritable markers for
diseases such as breast cancer, cystic fibrosis, and
Tay-Sachs...Learn your genetic risk for type 2
diabetes, Parkinson's disease, and other conditions.

deCODEme Complete Scan “Calculate your genetic risk for 51 conditions...”
Genetic Premium Male “These are our most comprehensive test and
Health includes all the other tests in our range... Evaluates

the risk of prostate cancer as well as the risk for
thrombosis, osteoporosis, metabolic imbalances of
detoxification and chronic inflammation. It also
evaluates the risk profile of the most common
cardiovascular diseases...”

Graceful Alzheimer’s “Check your future susceptibility BEFORE

Earth genome test symptoms occur... Pre-emptive insight into one's
genetic predisposition can empower and allow for
pro-active prevention.”

Navigenics  Health Compass “Knowing your genetic predispositions for
important health conditions and medication
reactions can help motivate you to take steps
towards a healthier life. By gaining insight into
these risks, you can plan for what's important.”

Also, Universal newborn screening (NBS)iskeiis an extraordinarily successfulstepublic health program,
preventing morbidity and mortality throughistriearly diagnosis and management of conditions including rare
inborn errors istziof metabolism. Conditions such as phenylketonuria are not clinically evident at birth but lead to
significant irreversible harm or death if not treated promptly. NBS has saved countless lives and vastly improved
the quality of children’s lives by allowing timely therapeutic interventions, and technological advances such as
the use of tandem mass spectrometry (MS/MS) have played a significant role in expansion of NBS. The capacity
of genome-scale sequencing for disease gene discovery is increasingly being applied as a diagnostic test in
children with suspected monogenic disorders.

The ability to analyze many or all genes in the genome simultaneously provides new opportunities for
genomic medicine. The clinical utility of sequencing is recognized for certain diseases and in an increasing
number of medical specialties, with genetic and genomic medicine offering the promise of improved diagnostics
and treatments — and patients asking physicians about the applicability of these technologies for their own care.
However, some experts caution the roadmap for translating genetics and genomics into routine clinical practice
is unclear.
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Computational health informatics

Computational health informatics (CHI) is an emerging research topic within and beyond the medical
industry. It is a multidisciplinary field involving various sciences such as biomedical, medical, nursing,
information technology, computer science, and statistics. CHI is a computer science branch that addresses how
computational methods relate to providing health care. Using Information and Communication Technologies
(ICTs), health informatics collects and analyzes the information from all healthcare domains to predict patients’
health status. The major goal of health informatics research is to improve the quality of care provided to patients
or Health Care Output (HCO). The healthcare industry has experienced rapid growth of medical and healthcare
data in recent years. Figure 8 depicts the growth of both healthcare data and digital healthcare data. It is projected
that the healthcare data analytics market will increase and grow 8-10 times as fast as the overall economy until

2017.
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Figure 8. Healthcare data growth. (Fang et al. 2016)

The rapid growth of new technologies has led to a significant increase of digital health data in recent
years. More medical discoveries and new technologies such as novel sensors, mobile apps, capturing devices,
wearable technology have contributed to additional data sources. Therefore, the healthcare industry produces a
huge amount of digital data by utilizing information from all sources of healthcare data such as Electronic Health
Records (EHR, including electronic medical records) and personal health records (PHR, one subset of EHR
including medical history, laboratory results, and medications). Based on reports, digital healthcare data from
all over the world was estimated to be equal to 500 petabytes (1015) in 2012 and it is expected to reach 25
exabytes in 2020 as shown in Figure 23b.

The digital health data is not only enormous in amount, but also complex in its structure for traditional
software and hardware. Some of the contributing factors to the failure of traditional systems in handling these
datasets include:

- The vast variety of structured and unstructured data such as medical records, hand-written doctor

notes, medical diagnostic images (MRI, CT), and radiographic films.
- Existence of noisy, heterogeneous, complex, diverse, longitudinal, and large datasets in

healthcare informatics.
- Difficulties to capture, store, analyze and visualize such large and complex datasets.

- Necessity of increasing the storage capacity, computation power and the processing power.
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- Improving the quality of care, security of patients’ data, sharing, and the reduction of the
healthcare cost.

Hence, solutions are needed in order to manage and analyze such complex, diverse and huge datasets in
a reasonable time complexity and storage capacity. Big data analytics, a popular term given to datasets which
are large and complex, play a vital role in managing the huge healthcare data and improving the quality of
healthcare offered to patients. In addition, it promises a bright prospect for decreasing the cost of care, improving
treatments, reaching more personalized medicine, and helping doctors and physicians to make personalized
decisions.

Finally, the major benefits of big data analytics in healthcare are as follow:

1. It makes use of the huge volume of data and provides timely and effective treatment to patients.
2. It provides personalized care to patients.
3. It will benefit all the components of a medical system (i.e., provider, payer, patient, and
nanagement).
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Introduction

Food and nutrition have an important role in regulation of human body processes. The
introduction of advanced techniques like “omics” in food science and practice causes serious
difficulties in interpretation of accumulated great biological data sources. A decision of this problem is
implementation of bioinformatics approach giving an excellent ground for successful development of
food production and engineering.

Food acts as important regulating factor on different processes within the body, like metabolic,
mental etc. Tentative growth of various chronic disease is also linked with food. Considerable endeavor
is ensured to prompt and improve the nutritional potential and quality of food sources. Recently, food
science has grown notably applying various smart techniques like “omics” series. In order to overcome
the vast variety of data and difficulties in their interpretation a database is necessary. It can store and
keep updating the comprehensive amount of biological data and resources, important for food and
nutritional sciences. Thus, the development of bioinformatics in food will help in providing the simple
and convenient ways for improving the food research and technologies.

Bioinformatics benefits the food production and nutrition

Bioinformatics strongly depends upon tuneful software solutions, disposable through electronic
telecommunications to the individual scientist. The massive computing power of the modern computer
systems is facing less and less limitations in storage of space and calculation time. Thus, the only
limiting factor is the lack of information on specific topics. Since industrial food processes are based
on food-grade organisms like bacteria, molds and yeasts, the advance in the number of complete
genomic sequences of organisms leads to rapid increase in valuable knowledge to compensate this lack.
This knowledge can be used in many different fields like metabolic engineering, cell performance as a
micro-process factory and elaboration of new methods for preservation. Moreover, genomic knowledge
food-grade microorganisms will innovate pre- and probiotic research in order to describe the broad
range of bacterial properties from growth to stress responses, to multi-species microbial ecology within
the human host.

Applied bioinformatics in nutrition food research: usage and examples

In order to realize the mechanisms of nutrients action, the investigators need to use a
reductionist strategy. It poses the problem to the level of cells, proteins, genes, etc. Then, the knowledge
gained is transferred to the level of human body to evaluate the nutrient effects. In this way, nutrition
researchers regularly generate and interpret data at the molecular level. The serious and predictive
understanding of metabolism needs nutrients and metabolites to be studied in the context of their
associated regulatory mechanisms. For example, the peroxisome-proliferator activated receptors
(PPARS) represent complex of molecules that directly link nutrient intake to organism response. PPARS
are transcription factors that sense different metabolites, like fatty acids and their derivatives at the
cellular level. After that, a launching of specific metabolic program by regulating the expression of a
variety of target genes happens. As an answer to this complete mechanistic understanding of PPARSs, a
recent bioinformatics study was performed to predict PPAR gene targets on a genome-wide basis. In
fact, this study gave the first library of nutrient-sensitive genes and showed for the first time how
databases and software can be integrated to investigate nutritionally relevant logical questions.
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It answers to the following questions:

i) Which genes are directly regulated by PPARs and, thus, by fatty acids and fatty
acid derivatives?

i)

iii)

A simplified flow-chart in Fig. 1 illustrates how databases and software were integrated to
answer these questions.

What are the biological functions of these fatty acid responsive genes?
What other transcription factors regulate these fatty acid-responsive genes”

The diagram in Fig 1 illustrates the basic steps in predicting the regulatory effect of PPARs on
gene expression. They can be summarized as follows:

- Search of literature in the PubMed database for manuscripts containing experimental
evidence for DNA binding sites of PPARS;

- Use of these sites to build probability matrices with different probabilistic assumptions
with the use of the CONSENSUS and GMMPS programs;

- Extract relevant genomic information (all known human genes, DNA regions upstream
from their transcription start site, conserved elements within these upstream regions, and homologous
genes in the mouse and rat genomes) using some custom programs;

- Scoring the probability matrices against DNA sequence upstream from known PPAR
target genes and randomly selected genes in the genome using custom program and software;

- Application of techniques that minimized the number of false-negative and false-
positive results in the detection of PPAR binding sites and identification of putative PPAR target
genes on a genome-wide basis

- Analyzing the sets of genes (PPAR targets) by using a gene ontology analysis tool,
along with custom software to determine the biological functions represented by each group.

Literature Genomics ranscriptomics | Gene Ontology | Regulatory site
(PubMed) (DNA sequence)| | (Microarray data) Database (TRANSFAC)

Manual review

Literature search,

UCSC Browser,

Custom software

Promoters,

Known PPAR
conserved

binding sites
uence, et

!

l

CONSENSUS, PATSER, GenMAPP, MEME, MATCH,
GMMPS, Custom Custom
Custom software soﬂware suftware
Genome-wide Blologlcal TFBS
PPAR target Functions co-occurring
gene library of PPARs w/PPAR site

Figure 1. Integration of databases and software to predict genes regulated by Peroxisome-
Proliferator (according to Lemay et al., Am J Clin Nutr 2007;86:1261-9)
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Bioinformatics in reconstruction of metabolic pathways

Microbial metabolism has been the ground of a major part of food processing for centuries.
Fermentation of food takes advantage of the ability of desirable microbes to convert substrates (usually
carbohydrates) to organic tailor-made compounds contributing to the flavor, structure, texture, stability
and safety of the food product.

Due to its fundamental importance to a wide variety of foods: breads, cheeses, wines, sausages
etc., over a century of research has focused on understanding microbial metabolism. The potential to
transform this knowledge into even greater value in foods has been dramatically expanded by the
availability of tools to understand and control microbial metabolism using modern genomic and
bioinformatics approaches. In fact, the tremendous information flow on microbial metabolism is only
being converted into usable knowledge because of the arrival of the massive computing power and the
bioinformatics’ tools that are apply to large data sets generated by nutrition-related research.

This knowledge will not only drive a new generation of foods with additional values but also
will change dramatically the ability of foods to influence individual quality of life.

Application of gene expression arrays

The ability of the nutrients to control directly the expression of specific genes is at the core of
a new generation of nutritional science, which gives opportunity of researchers to use genomic
information to develop technologies, able to measure the number of transcribing genes in any cell at
any time (i.e. gene expression arrays). In this way, scientists are finding the intimate relationships
between organisms and their environment.

Studies on the integrative metabolism of animals and humans are associated with food and
nutrition as a multidisciplinary field center. Currently, the apparent strong relationship between diet
and health is finding its mechanistic basis through understanding the interaction of nutrients with
metabolic pathways. Since most nutrients affect a wide range of biochemical pathways, the food exerts
multiple effects: pleiotropic dysfunctions in the relative absence of define nutrient, i.e. deficiencies, and
pleiotropic benefits when they return to appropriate, optimal levels.

The classical biochemical approaches describe very well the effects of a single nutrient on a
single target; however, the multiplicity of metabolic effects on the entire organism is difficult to be
explained. The modern genomics uses the reverse approach: it measures everything. Genomic-based
investigations reveal the pleiotropic behavior of exogenous nutrients through describing the full
spectrum of transcriptional responses to any variable, including nutrients. These global experimental
designs are possible due to the ability of bioinformatics tools to adequately manage and analyze the
vast volume of accumulated data.

Genetic variability

After the sequencing of human genome the mapping of its polymorphic regions that control
individual phenotypic differences among the population are going on. The established by this approach
variations were thought at the beginning only as the key to the discovery of genetic diseases. However,
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it is known now that they are also the keys to individual variation in diet and health. Sequence variation
in particular gene (even in particular nucleotide, the so called Single Nucleotide Polymorphism - SNP)
can influence the quantitative need for and physiological response to various nutrients. There are
examples of polymorphism that influence nutrition and disease: the phenylketonuria, in which the
inability to metabolize phenylalanine renders this nutrient toxic; the lactose intolerance due to
polymorphism both in the structure of the lactase gene, which produce dysfunctional enzyme and in
regulatory regions of the genome that prevent perfectly functional lactase enzyme from being produced
in adults.

With genomics will come the knowledge of predicting health. The potential of bioinformatics
to deliver knowledge about the integrative nature of multiple genes to the individual consumer will
help in predicting its health leading to individualized dietary choices. This will be possible in close
future due to the bioinformatics tools, capable of managing the volume of data implied by quantitatively
assessing individual metabolism and intervening in an that individual’s metabolism using foods to
improve their health.

Genomic and bioinformatics tools will improve human nutrition trials. During their
performance, it is not easy to find statistically significant positive effects of various nutrients and food
because the magnitude of the benefit is quite small relative to the overall variability in a sample of
humans chosen at random from the population and because humans do not respond homogeneously to
even the most straightforward nutritional variables.

To overcome this obstacle, clinical and epidemiological trials are now being analyzed using
SNP data as independent input variables. Most clinical trials build catalogues of SNPs of genes whose
variation in function have shown to be important for manifestation of example cancer, autoimmunity
and heart disease. Such approach has been successful not only in identifying the causes of statistical
variation among individuals but also in identifying the potential biochemical mechanisms responsible
for the variation in response.

Genetic polymorphism and nutrient requirements

Polymorphisms in the various genes encoding enzymes, transporter proteins and regulatory
proteins affect the absolute quantities of essential nutrients (incl. vitamins, minerals, etc.) that are
needed to satisfy the cell requirements for sufficiency. Consequently, the variation in the population’s
nutrient status is a complex value. It is a result of variations in food intakes plus inherent variations
amongst individuals within the population in their genetically defined abilities to absorb, metabolize
and utilize these nutrients. The figures for the recommended daily allowances of each nutrient are
shaped on the basis of experimentally determined data for the needs of a statistically representative
segment of the population. However, the range of responses to both micro-and macronutrients in the
population as a whole is much larger. Specifically individual food choices, genetics and nutrition are
linked in s complex way that was highlighted quite recently with the help of genomic tools. Thus,
polymorphism in a recently identified sweet receptor protein has been proposed to be the basis for the
varying intakes of caloric-rich foods, i.e. the famous sweet tooth.

Based on the information genomics succeeds to reveal for food preference and the
corresponding roles of genetics and environment, the food science in now able to make nutritional
superior foods that are more attractive (organolepticall) to that subset of the population for whom they
are most appropriate. However, now the technologies to describe the effects of diet on individuals
experimentally are used at broad basis only in clinical trials. They are not included yet in the routine
consumer assessment. Therefore, consumers cannot benefit from nutritional knowledge about

9|Page



BIOINFORMATICS IN FOOD PRODUCTION AND ENGINEERING

themselves, because they simply do not have it. This lack of knowledge is the most important factor
that influences negatively the widespread improvement in nutritional health in the consumer
population.

Genetic variation and the response to variations in overall diet

The basic metabolism of macronutrients, especially of carbohydrates and fats in humans is
strongly affected by genetic differences. For instance, polymorphisms in the apo-protein genes (apoE,
apoAlV) or lipoprotein catalysts (lipoprotein lipase) have been shown to directly affect the clearance
of dietary lipids. That is why polymorphisms in lipid metabolic genes command the response of the
individuals to dietary fat in a different way. apoE protein clears liver-derived lipoproteins (VLDL and
LDL) from blood. This functionality of the protein is influenced by the polymorphism in the genes
encoding for it. In addition. health outcomes beyond heart disease including Alzheimer’s disease have
been shown to be correlated to apoE phenotypes. Apparently, diet plays a differential role in the
development of these diseases according to genotype through the role of diet in influencing the
quantitative flux of hepatic lipoprotein metabolism.

Many consumers consider the application of genomic testing in the population as useless or
inappropriate. This is because they do not see any direct benefit for themselves. Nevertheless, acquiring
knowledge about individual variation in diet-responsive genes is of great values, since this knowledge
can be used for successful intervention. There are evidence that genotype predicts a difference in
postprandial lipid metabolism of dietary fat. The translation of this discovery into practical
recommendations how to alter the intakes of dietary fat for those affected is of great practical value.
Thus, the information of how an individual responds to foods provides that individual with the means
to change their diet to improve their health. Practically, each new discovery of genetic polymorphisms
linked to health, is making the complexity of the science bigger. However, thanks to modern
bioinformatics tools that are integrative by nature, each new discovery is added to the rapidly expanding
coherent database of diet and health of individual consumers.

Bioinformatics approaches refine the food production

Biomass and metabolites yields

Optimization of biomass yield is by a topic of continuous attention in respect to improvement
of the food production process. The genome-scale metabolic modelling is a technique applied to
rationally improve fermentation yield. Within this technique, the genome sequence of the organism is
used as a catalogue of the metabolic potential of a given strain. Using this technique, metabolic models
have been made for many microorganisms, including several food-grade microbes. A limiting factor in
the correctness of the metabolic models can be the quality of the genome sequence. For instance, a gene
can be missed due to poor sequencing coverage. However, the metabolic model can be finalized by
identifying those metabolic reactions that are missing in the model, but are likely to present because
they are part of metabolic reaction cascade or pathway. The full genome-scale metabolic models allow
the in silico simulation of growth of the organism under the (metabolic) restrictions provided by the
substrate availability in the medium. These simulations can be used to optimize medium composition
to better fit the organism requirements. Moreover, the models can suggest alternative or cheaper
substrates for fermentation, and improve the production of essential compounds, taking into account
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possible changes in activity with respect to flavour or texture activity of the strain. These models have
also been implemented in complex (multistrain) fermentation processes, providing insight in the
interactions between different species/strains in a complex fermentation.

A second factor that improves the overall yield is the robustness of the strains. This factor can
be influenced largely by changing fermentation conditions under which starter cultures are prepared.
For example, in L. lactis a number of genes that were potentially causative related to survival were
identified by correlating the levels of gene expression to the survival of the species. The importance of
these genes for the strains’ phenotype was further proven by gene-disruption technique. It showed that
not only gene itself but also its expression is important for a given phenotype. In other words,
preconditioning L. lactis strains, followed by GTM and TTM, allows improving their survival to heat
and oxidative stresses.

Texture and flavour performance

The fermentation process influences as well such important characteristics like the texture and
the flavour of the food products. Since these traits are microorganism-specific, they can be altered by
fermentation. For instance, addition of adjunct strains to cheese fermentation can change the product
flavour or addition of exopolysaccharide-producing organisms can improve the texture of yoghurt. In
a similar way, the flavour profiles of wine can be modified by either changing fermentation parameters
or changing the starter cultures. Apparently, all these improvements can be made by testing a variety
of experimental regimens. Thus, bioinformatics and data analytics may be used to optimize the designs
of these experimental regimens.

The gene content of particular microorganisms under specific fermentation conditions may be
used for deduction of their performance. Of course, such predictions based on a metabolic model must
be further verified, as was the case with L. lactis MG1363 flavour formation. Similarly, the genomic
sequence of Lactobacillus delbrueckii subsp. bulgaricus revealed how this species is adapted for the
fermentation of milk and the production of yoghurt. The Oenococcus oeni and yeast genome analyses
have been performed and their relation to wine fermentation was elucidated.

Besides these advantages of the metabolic models it is obvious that predicting more complex
phenotype such as stress tolerance is less straight-forward to predict based only on gene content. For
prediction of these phenotypes, information on the transcript levels of the genes might be taken into
account.

The effects on taste and texture are mainly caused by the metabolites that are produced or
transformed during fermentations. Predicting final sensory characteristics is possible using metabolite
patterns rather than associating gene content with effects on taste texture. The quantitative descriptive
analysis by a trained sensory panel is the golden standard test for sensory characteristics of a fermented
product. However, these tests are elaborate and require substantial amounts of the product. In addition,
the results are dependent on the panel experience. Using metabolomics’ profiling techniques it is now
possible to measure at the same time hundreds of metabolites in a food sample of small quantity. This
has led to the development of new statistical methods that associate instrumental data (e.g.
chromatographic and/or mass spectrometric ones) to sensory data.

Setting fermentations by mixed cultures

In the preparation of various fermented foods, complex fermentations take place in which strong
succession of microbes (bacteria, yeasts and fungi) can occur. These are, for example the processes of
obtaining cheese, malolactic wine, soy and seafood. Similar to the approaches of associating
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transcription of genes to specific phenotypes, described in 2.3.2., presence and absence of
(combinations of) microorganisms (or their functionality) can be associated to the characteristics of a
fermentation product.

To characterize fermentation, the first essential step is to determine the microorganisms present
at the different stages of the fermentation and to make correlation between these sets of microorganisms
and the measurement of metabolites (making metabolomics). The functional potential encoded in their
genomes determines the properties of the microbial consortia. These metagenomics studies also reveal
DNA of unculturable organisms in addition to the DNA of the culturable ones. Thus, functionalities of
the microorganisms can be predicted based on the sequences found in a consortium. However, there
are still technical restrictions in identifying and separating the DNA of dead microbes that can be a
reason for misleading results.

The mRNA-derived sequences of a complex fermentation can be profiled using
metatranscriptomics approach. An advantage of metatranscriptomics over metagenomics approaches
is that the gene expression measurement allows determining what genes are actually expressed in a
mixed culture. Metatranscriptomics technique is using microarrays with the genomes of several species
to determine global gene expression across a species. Practical application of this approach is reported
for the bacterial communities involved. The advantage of this approach is that the metagenomics and
metatranscriptomics profiles can be traced to their likely sources (genome sequences of isolates from
the fermentation product). Thus the application of metagenomics/metatranscriptomics techniques to
characterize and potentially optimize fermentations is apparent.

It is well known that bacteriophages play an important role in industrial fermentations due to
the phenomenon genetic transduction via which biodiversity can be maintained. However, it is also
known that phage sweeps disrupt fermentation processes with great efficiency. Currently, predicting
the specificity of bacteriophages and the interactions between microorganisms in mixed-culture
fermentations are time-consuming tasks. Bioinformatics techniques can be used to analyse the
interaction of microbes and bacteriophages. They can contribute to knowledge-based improvements of
fermentation stability. This could be achieved by performing experiments with in situ designed
microbial consortia that are currently under development.

Bioinformatics in crop production and food processing

The progress of application of Genetically Modified Crops (GMC) as a common approach of
food industry depends on genetic research of plants that contribute for successive rate of their
production. The main objective of GMC production is to improve quality of raw materials of food
supply to ensure their effective processing, and finally to result in costly and safety food. The
identification of biosynthetic genes of plant origin that are important for health is supported by Genome
sequencing projects. This genome research is directly involved in promoting efficiency and efficacy in
plants breeding for their improvement.

A typical example in this direction is the Cocoa (Theobroma cacao) that is used as a raw
material for chocolate containing food products. Selection of seeds with higher quality and good flavour
has been difficult in the past. For proper seed harvesting the trees have to mature for at least 3 - 5 years.
The performance of DNA fingerprinting in screening of plant markers for detection of breeds genotypic
links and the availability of EST (Expressed Sequence Tags) sequences and genetic comparisons to
other identified plants, all depend on bioinformatics. They will further improve selection of desired
traits in early stage of plant’s development based on genotype and phenotype.
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As concern food processing, the most direct application of bioinformatics is in optimizing the
quantitative parameters of traditional unit operations. In general, the main aim of processing food
commodities is to improve storage stability and safety. Usually the processing procedures are
associated with considerable excess of energy applied to ensure a large margin for error. The structural
complexity of biological materials, the natural variability of living organisms and the response of the
input materials to processing parameters are the three main factors that require the large error margin.
With the help of bioinformatics our knowledge on biological organisms from bacteria and viruses to
plants and animals is emerging progressively, facilitating the optimization of the food processes and
diminishing all cost-important inputs, mainly energy.

The big challenge in modern food processing is to merge efficiently biological knowledge of
living organisms with the bio-material knowledge necessary to convert them to foods.

Traditionally, during processing the biomaterials of living organisms are restructured into
smaller and simpler forms of stable, relatively uniform foods. This process is strongly energy
consuming and in most cases, along its performance the inherent biological properties of the living
systems are lost. Bioinformatics offers detailed description of the inherent complexity of biological
macromolecules within living cells, their structural properties and much of their functions, all of which
make the fundamentals of functional genomics and proteomics. Although at the moment just theory, in
near future it will be possible to use the inherent structural properties of natural food commaodities to
self-assemble new foods that retain great biological and nutritional value and that are processed with
minimum energy. The biological structure—function relationships discovered through bioinformatics of
living systems will be mapped into the structure—function relationships of the next generation of foods.
Moreover, the vast knowledge currently being produced by the biomical sciences (genomics,
proteomics, metabolomics) will improve the knowledge on ingredient characteristics and behaviours.

The natural properties of the biomaterial molecules that constitute living organisms determine
the basic biomaterial properties of foods. While processing food stuffs in a traditional way, little
advantage is taken of the unique properties of specific molecules. On the contrary, as a result of the
classical processing methods all bio-molecules of a particular class (e.g. carbohydrates), are exposed
to physical, thermal and mechanical energy to restructure them into more stable, and/or more
bioavailable food systems. During this process all the unique differences (due to the characteristics
inherent to biomolecules) are eliminated. Eliminated as well are the complex structure—function
relationships of living organisms.

The food processing is not always necessary to the quality of foods. In fact, it is other way
around: highly specific biological properties of the original living organism are a key to the processing
strategy and contribute significantly to the organoleptic properties of the final food products. For
instance, the treatment with rennet enzyme of bovine milk induces the natural aggregation of milk
caseins leading to gelation during cheese manufacture. The texture and the organoleptic properties of
the final product is due to the unique self-assembly properties of milk casein micelles that are
colloidally stabilized in milk by kappa caseins but destabilized when enzymatically cleaved of their
solubilizing glycomacropeptide. Another example is the leavening of bread, in which wheat seeds are
ground to disassemble their biological structures through mechanical energy, and then the biological
processes of yeast fermentation achieve simultaneously the enzymatic elimination of phytic acid during
dough incubation and the biochemical production of CO- as leavening within a mechanically reworked
protein gel structure. Thus, cheeses and breads provide proof of positive synergetic effect due to
combination of retained biological processes of catalysis, self-assembly and restructuring. However,
the functional genomics, proteomics and metabolomics are providing the knowledge necessary to
readdress food processing using bimolecular activities. With the availability of such tools in hand, crops
production will be organized that will result in products not simply enriched in a single valuable
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component, but redesigned with a renewed purpose to increase the innumerable values of foods in
providing quality of life.

Bioinformatics in food quality & safety

Food science represents a multidisciplinary research and applies area that unifies engineering,
biological and physical sciences to explore the types of foods, reasons of their deterioration,
mechanisms in food processing and retrieve of food quality. Bioinformatics is executing an important
role during most of the processes, if only the data about them are accessible in machine-readable
formats. Having in mind the important role of microorganisms in food, the use of bioinformatics tools
for predicting and assessing their desired and undesired effects is of special interest. In this respect, the
investigations in genomics and proteomics are performed to meet the requirements of food production,
food processing, refine the quality and nutritive value of food sources and many others.

Besides, the bioinformatics approaches can also be applied in fabrication the good quality of
the crop comprising high yield and disease defense. Different databases containing data on food, their
constituents, nutritive value, chemistry and biology exist and can be used in food research and
manufacture. A combination of bioinformatics with laboratory verification of selected findings can be
outlined with the following methods: genomics-based functional predictions; genomic scale metabolic
models, design of complex food properties and engineering.

The research focus in the food industry is outlined by the consumers need for high quality,
convenient, tasty, safe and affordable food.

Nutrition and food quality

Modern food science and technology have provided incomparable value to consumers in the
literally innumerable number of individual choices of delicious, safe and nutritious foods. This great
variety of choices has been supported by scientific knowledge at all levels of the food chain from
genetic improvements in agriculture production to engineering of food processes and analysis of
consumer sensation. With its power to create detailed molecular knowledge of biological organisms,
bioinformatics is assembling the tools to reinvent the food supply. In this way bioinformatics will
produce for humans a great value contributing to the increase in the quality of their lives through the
quality of the foods they eat. In particular, bioinformatics is:

- Defining which foods are safe at molecular scale;

- Developing safer to the consumer foods;

- Helping to understand the fundamentals of food flavours, textures and taste
sensation and understanding the relevant neurophysiological processes;

- Improving the process of food making and optimizing the flavor and texture
impact of foods.

Specific food characteristics effecting its quality

The following important elements characterizing food are used as indicators to develop its
description through bioinformatics tools.
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Food taste

There are molecular and genetic details of the taste receptors including: sour bitter, umami,
sweet, salt. These taste receptors can be used to discover the next generation of taste modifiers for
foods. New developments in computational algorithms and software with the available known
structures of these receptors have made possible the molecular modelling and simulations. Such
simulations will make possible to develop more intense tasting compounds as food additives. These
also help in understanding the basis of taste persistence, antagonism and complementation.
Bioinformatics sequence similarity algorithms have been used to determine homology between sweet
taste receptors and brain glutamate receptors as well as in the identification of sour taste sensors in
mammals. Flavor systems are becoming more complex, more attractive and more individualized to
consumers.

Food flavour

The formation of flavour in dairy products strongly depends on the essential role of lactic
acid. In this respect the investigation of the genetic sequences of lactic acid bacteria showed the
flavour forming potential. The profile of many food products does not depend on single compounds
but is due to the availability and liaison of many different molecules.

However, bioinformatics plays a serious role in connecting different flavour compounds for
new product development on the ground of knowledge, taste and needs of the consumer.
Bioinformatics has a considerable cue in providing food quality taste flavour maintaining also its
safety. Running in accordance with the molecular evolution, bioinformatics has a pivotal cue in study
of evolution of receptors for taste.

With various studies being conducted primarily focusing on the taste receptors with the link
between the glucose regulation and bitter taste receptors established. Recently, electronic database
was established which include the chemical properties of various compounds related to their taste and
flavour. Moreover, study of genetic sequence of lactic acid bacteria played an important role in
uncovering the formation of specific flavouring potential helping in giving flavour to many fermented
foodstuffs.

In addition to the taste receptors the odor receptors (exceeding the taste ones by 100 X) are
being identified as well and the full olfactory complement of genes has been published. This
bioinformatics approach to both taste and odor receptors study allows design of sophisticated flavor
systems that optimize flavor perception in highly nutritious foods that are currently organoleptically
undesirable although their great health value.

Food borne pathogens

Recently, it is admitted that a growing appreciation for bioinformatics exists in the area of food
quality and safety. A major problem of food industry are food borne pathogens and the genome
sequencing projects are now focusing on innovative tools helping to determine the source of the food
borne diseases. Thus, the notification of the specific molecular markers can help in determination of
spoilage and pathogenic bacteria and prediction of thermal preservation stress resistance.
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A very important output of bioinformatics is the design of tool for detecting and identifying
bacterial food pathogens. This tool has been developed by FDA (Food and Drug Administration) for
molecular characterization of bacterial food borne pathogens using microarrays.

Due to its potential many genomic sequencing projects are targeting on the food-borne
pathogens. With the development of genomic sequencing technologies bioinformatics has propose an
innovative way which will help in determining the source of the food-borne diseases. For instance,
recently developed approach by the FDA (Food and Drug Administration) helps in detection of the
bacterial food pathogen and these computer based tools are focusing on microbial growth prediction
on a given food source. To ensure food quality progress it is necessary to use bioinformatics tools that
allow detection of various properties of food automatically.

Detection of food allergens

Bioinformatics give efficient approach to evaluate allergenic potential of normal proteins in
food and have an important role in safety assessment of genetically modified crops as it is crucial to
have safety from food allergy. These tools are acting for prediction of functionality and allergenicity
of food products studying the protein sequence of their ingredients. Practically, a comparative genomics
technique of bioinformatics has been used to characterize many food related pathogens associate with
food and sources linked to their production. They have been an object of many sequencing and
comparative genomic research projects. The results obtained showed that such studies can have
significant cue in prevention of crop related disease and food poisoning. Crops are major part of food
industry and for this reason must be of good quality (i.e. high yielding and disease resistant).Using
bioinformatics approach genes identification in the commercially important crops can be used in
development of transgenic crops and new genes can increase quality and quantity of food products.
Such technique can be useful in elaboration of agro-chemicals based on the idea of signal transduction
pathways for specific targets and finding of compounds applicable as pesticide, herbicide or insecticide.
Because of the very distinct origin of allergens they possess very large sequence similarity in the
structure causing equivalent responses of IgE. The use of these methodologies has incited WHO to
involve sequences similarity search as rules of the feature for evaluating allergenicity of genetically
modified food. Recently, various techniques of bioinformatics have been performed for allergen
diagnostic development to predict the peanut allergy with the help of machine learning.

At present, different databases dedicated to the food allergens exist, like AllerMatch, Informall,
FARRP Allergen database and SDAP.

Bioinformatics in food quality and safety

There is a growing appreciation for bioinformatics in the area of good quality and safety. Many
food products undergo some form of processing before they reach the consumer, ranging from
fermentation to packaging. In many of these processes, microorganisms play important roles, either in
transforming the food into the desired end product or in spoiling or contaminating the food.

Bioinformatics plays an increasing role in predicting and assessing the desired and undesired
effects of microorganisms on food. | respect to the desired properties, bioinformatics methods can be
used to improve the microbial production of fermented food products, such as genomics-based
functional predictions, the creation of genome-scale metabolic models and prediction of complex food
properties (e.g. taste and texture), and properties of complex fermentations.

For deduction of a specific gene function, correlating analysis of the presence and absence of
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the gene in organisms with the presence and absence of a certain phenotypic trait in the same set of
organisms (the so called gene-trait matching; GTM) is applied. For instance, a set of proteins was
predicted to be involved in the degradation of plant (oligo-)saccharides by linking isolation source of
bacteria to gene presence/absence.

In the light of food safety, comparative analysis of the genome sequences of a species where
some strains have a positive impact (e.g. flavour enhancement) while others are detrimental (e.g.
spoilage) can be used to identify genetic elements potentially underlying these differences.

Tools that can be used to link -omics data to phenotypes are PhenoLink and DuctApe.
Techniques like multiple displacement amplification can be used to amplify DNA from a single cell,
and a range of genome assembly tools can be used to assemble the reads obtained from single-cell
sequencing.

And finally, mobile elements such as transposons, plasmids or phages can transfer functionality
from one bacterial strain to another. An example is the galactose utilization operon transfer between
Lactococcus lactis strains. Identifying potential transposon insertion sites is crucial and can be
facilitated by bioinformatics tools such as transposon insertion finder

Risk assessment

The identification of potential health or safety risks of microbial strains present in the food is
an important step is risk assessment of food products consumption. Bioinformatics contribute to this
issue with the performance of selectively screening microbial genome sequences for genes with specific
functionalities - a highly sensitive and computationally efficient way of identification of potential health
hazards.

The potential of a specific bacterium for antibiotic resistance or virulence can be investigated
by comparing its genome sequence to a reference database containing known resistance genes and
virulence factors. Similar approaches have been described for the identification of persistence of
bacteria in food products, anaerobic spore-forming organisms in food and potential pathogens using
metagenomics data. This (meta)genomics-based methodology can be applied to a wide range of
functionalities, e.g. production of antimicrobial peptides.

Tracing and detection of food microorganisms

Food production and food consumption both take place in complex environments. There,
besides the microorganisms present in the natural environment, many other sources of biomolecules
(proteins, fats and carbohydrates) are present. This complexity is causing difficulties in detection and
tracing of specific microorganisms, either potential food pathogens or beneficial probiotic strains added
to the food product to enhance its functionality.

Next to classical detection DNA-based techniques such as (q)PCR, new methods based on
genomic data have been developed that allow for a fast and precise tracking or detection of specific
species or even strains among the natural microflora. For instance, specific amplification and
sequencing of a locus that was identified to be discriminatory between different L. plantarum strains
was performed and the data obtained showed that this is a useful approach to quantify the relative
presence of different strains through the passage of the GIT. The same approach can be followed to
design specific primers to distinguish between pathogenic and non-pathogenic populations of specific
species and to detect a strain of interest in food products, allowing this specific product to be branded.

The metagenome approaches for dedicated tracing of a single strain can reveal their potential
in the detection of harmful bacteria as well. The main advantages of these methods that do not require
culturing stage, overcome the concern of creating bias in the results due to failure of detecting low
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abundant microbes that might be overgrown in culture-dependent detection methods.

The role of toxicogenomics in foods’ quality guarantee

Food safety is becoming more and more a major area of concern for consumers and the food
industry has developed a coherent research programme to ensure food safety with well-established
classical methodologies but also new state-of-the-art research tools. The goal here is to ensure that
the inactivation or inhibition of undesired microbes is possible using the minimum treatment of foods
necessary, to increase the understanding on the ecology of food-born microbial populations, to find-
out how these populations respond to environmental factors like stress and last but not least the
toxicological evaluation of foods and food compounds.

A branch of genomics, toxicogenomics, is an emerging field that contributes to evaluation of
toxicological effects of specific compounds. Toxicogenomics utilizes DNA arrays (tox-chips) to test
the toxicological effects of a particular compound. The DNA arrays techniques is based on the DNA
microchip methodology and it probes human or animal genetic material printed on micro-devices to
profile gene expression in cells exposed to test compounds. This technique avoids the study of animal
pathology to define illness. The advantages of the test are speed and ease of use, typical for DNA
expression analysis, and reduced animal testing. The application of this technique presently faces the
challenge of accumulation of massive amounts of data, which are produced through the DNA arrays
and their sophisticated analysis and interpretation. Nevertheless, the integration of tox-chip data must
into the knowledge basis of the research institutions is a question of near future.

Perspectives

Bioinformatics is increasingly applied in food production, engineering and safety. Some future
trends of its potential implementation are as follow:

- Sequence-based prediction of microbial functionality. An inventory is needed of the
functionalities, for which bacteria can reliably be determined using sequence data. New publicly
available data sets with genotype/phenotype/transcriptome such as those available for L. lactis and L.
plantarum could help to develop new sequence-based functional prediction strategies such as further
specified protein domains to more specifically screen for, e.g., carbohydrate active enzymes and
relating promoters or regulatory binding sites to phenotype.

- Establishment of culture collections for desired traits on the basis of knowledge-based
in silico screening. This would require databases that integrate data from genomics, systems biology,
phenotypes, ingredient information, properties of batches of foods, on-line measuring of parameters
during the food making process and ‘biomarkers’ for functionality in specific taxa (based on, e.g.,
GTM). Specific emphasis should be put in propagating the FAIR (findable, accessible, interoperable,
re-usable; http://datafairport.org/) principle in storing data. The future software and databases can be
consolidated in a virtual machine that can subsequently be run in the cloud. First steps in this direction
are being made in the EU-funded project GenoBox (www.genobox.eu) that aims to create a database
that consolidates genotype and phenotype data that allow screening microbial genomes for functionality
and safety risk factors.

- Creation of database to assess risks of the presence of certain microbes/functionality in
a given food product. The idea is to determine minor levels of microbial components in many food
products across the world through sequencing of the food supply chain. The project is already
established by a consortium of IBM and MARS (http://www.research.ibm.com/client-
programs/foodsafety/). The ambition is into this data base sufficient biodiversity to be recorded and
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further use for branding products based on unique microbiota paterns present in fermented products or
foods that contain a microbiome.

- Directing fermentations performance through studying the interactions between
microbes and their environment. These approach use systems biology beyond genome-scale metabolic
models and kinetic models to describe interactions between microbes and their matrix. To be realized
these studies require a substantial knowledge base on both the properties of the microorganisms and
the physical properties of the matrix in which the organism operate. The consolidation of the
information and expanding amount of data on food fermentation and safety in databases and its
combination with appropriate experimental design, algorithms, expertise and follow-up experiments
should allow enhancing the prediction of fermentation performance and safety.
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Bioinformatics for agriculture

Genomics, metabolomics and interactomics for sustainable
agricultural development

Agriculturis not only a major occupation of a few nations, but also way of life, culture and
custom. Cee reals like rice, wheat, barley, corn, sorghum, millet, sugar cane have always been
considered as important food in human populations over different continents. From thousands of years,
people are using breeding and selection to make domestic varieties of these crops with the wanted
characteristics. Significant progress has been completed in taste, nutritional value and productivity,
especially during the “Green Revolution” which took place in 1960 - 1970.

However, the Green Revolution has been also known with its unsuccess and we are no longer
capable to survive by few “high yield” varieties. That's why now we need to use more advanced and
modern biotechnology methods in agronomy in order to supply nutritional food to continuous
increasing world population while considering three important limitations - less plow lands, depletion
of energy resources and unpredictable climate change. In other word, we need to enlarge the pace of
research so we can be capable to provide enough food for future generations.

The last ten years were considered to be a new era of bioinformatics and computational biology
which enlarges the pace of scientific invention in life science. Involvement of computer science in the
area of plant biology has change the way we usually do research related to plants in previous decades.
Rapid ground breaking progress of sequencing technology during the few last years made this
technology so cost-effective that nowadays it is common for any experimental lab to use sequencing
methods to study genome of interest.
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Including modern biotechnology progress in agriculture will definitely achieve huge dividends
to the bioenergy sector, agro-based industries, agricultural by-products utilization, plant improvement
and better management of the environment. Latest genome and transcriptomics sequencing of a plant
species gives the opportunity to reveal the genetic architecture of many plant species, the differences
in thousands of individuals within and outside population, the genes and mutations which are essential
for improving the particular wanted complex traits (Fig. 1).
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Fig. 1. Structural Genomics

Therefore, we need to use genomics resources available for many non-model and model plant
species as a result of rapid technological progress in omics and bioinformatics fields which finally led
us to admit new translational area of plant science well-known as ‘Plant Genomics’. Within the scope
of plant genomics, we will be able to do following activities:

1. Sequencing and de novo assembly of non-model plant species;

2. Making a detailed list of genes with their functional annotation and ontology;

3. Discovery of a great quantity of SNP (single nucleotide polymorphism) / InDeLs (insertion-
deletion length polymorphism) markers to help in fine mapping and selection of superior breed,;

4. Identify “candidate genes/mutations/alleles” in conjunction with wanted traits after
differentiating underlying QTLs (quantitative trait locus) from markers generated in 2) using

QTL mapping methods e.g. GWAS (genome-wide association study);

5. Creating “MarkerChip Panel” for the purpose of genotyping and selection.

In this respect, metabolomics is also fast emerging field in the world of omics, and normally
used to scan all the metabolites present in sample using LC-MS, NMR-MS and GC-MS instruments.
For example in human, it was used to define all the possible metabolites which directly or indirectly
indicate food habit of an individuals whose urine samples were collected, analyzed in one of MS
instruments and obtained data process computationally (Fig. 2).

6|Page



THE ROLE OF BIOINFORMATICS IN AGRICULTURE

Key metabolites
~ 1500 molecules

Biochemicals o ’|' Metabolomics
(metabolites) 0,‘"—‘ I‘ S ~ 10% molecules
t M t
£ S o %

Uk Proteomics
= \\. ~ 10° — 107 proteins

=

Protein

=
=

RNA PN N s RS SN i o Transcriptomics
~ (- - e 1 A Y /}” ~ 10° RNA transcripts

=
=

"o o oo
:ﬂ (» ;j . (l O O o )
ol e g 2P S Genomics
A

DNA &
o _o 23,000 genes

O &< O 9 ©
OOOOOOO

o"ooooo

qd OOy

Fig. 2. Metabolomics Technology

Also the interactome is made up from a complete set of all protein—protein interactions which
help to understand the molecular networks governing cellular systems. For example, the interaction
map of Arabidopsis revealed about thousands of highly reliable relations between proteins (

).

Impact of genome sequencing in agriculture

The term genome can be applied particularly to the whole genetic material of an organism
including the full set of nuclear DNA (i.e., nuclear genome) and also to the genetic information stored
within organelles, which have their own DNA - the ‘mitochondrial genome’ or the ‘chloroplast
genome’.

Some organisms have multiple copies of chromosomes, which are diploid, triploid, tetraploid,
etc. In the reproducing organism (typically eukaryotes) the gamete has half of the number of
chromosome of the somatic cell and the genome is a complete set of chromosomes in a gamete.

Moreover, the genome can contain non chromosomal genetic elements like viruses, plasmids or
transposable elements. Most biological units which are more complex than a virus, have extra genetic
material besides that which has in their chromosomes. Therefore ‘genome’ describes all of the genes
and information on non-coding DNA that have the potential to be present.

However, in eukaryotes like plants, protozoa or animals, ‘genome’ is typically associated with
only the information on chromosomal DNA. The genetic information contained by DNA within
organelles i.e., chloroplast and/or mitochondria is not considered to be a part of the genome. Actually,
mitochondria are sometimes mentioned to carry their own genome often called ‘mitochondrial genome’
(Fig. 3). The DNA established in the chloroplast may be called ‘plastome’ (Fig. 4).
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The better understanding of genome evolution comes from the comparative analysis in
microbial genome which uses metabolic comparison and gene organization at metabolic reactions level
with their operons using pathway, reaction, structure, compounds and gene orthologs. In this regard,
the sequencing of whole genomes from various species allows determining their organization and
provides the starting point for understanding their functionality, thus favoring human agriculture
practice.

At this point, the contribution of genomics to agriculture includes the identification and the
manipulation of genes related to particular phenotypic traits as well as genomics breeding by marker-
assisted selection of variants. The name “agricultural genomics” (or agri-genomics) aims to find
innovative decisions through the study of crops or livestock genomes, reaching information for
protection and sustainable productivity for food industry, but also for different aspects such as energy
production or design of pharmaceuticals.

Because of the fact that most bacterial species are still unknown most of the methods used for
profiling microbial society and characterize their basic functional features are now accepting whole
DNA extraction and the use of NGS (Next-Generation Sequencing) on the entire sample, with the
objective of sequencing and characterizing DNA fragments of all the species included, i.e., the
metagenome (Fig. 5).
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The application of metagenomics in agriculture also showed to be appropriate for representing
the complex patterns of interactions occurring among microorganisms in soil and in plant rhizosphere
or in particular tissues or organs. Moreover, metagenomics showed to be useful for tracing the shift in
taxonomic composition and functional redundancy of microbial society in rhizosphere and in soil which
are in connection to environmental changes related to fertilization and agricultural management.

Applications of agricultural bioinformatics

Collection and storage of plant genetic resource can be used to manufacture stronger, disease
and insect resistant crops and improve the quality of livestock making them healthier, more resistant to
diseases and more productive.

Comparative genetics of the model and non-model plant species can discover an organization
of their genes with respect to each other which are used after that for transferring information from the
model crop systems to other food crops. In this regard, examples of existing full plant genomes are
Arabidopsis thaliana (water cress) and Oryza sativa (rice).

Also one of the resources for receiving energy by converting into biofuels such as ethanol is
plant based biomass and it could be used as for vehicles and planes. In addition, biomass based crop
species like maize (corn), switch grass and lignocellulosic species like bagasse and straw are widely
used for biofuel production. Accordingly, the use of genomics and bioinformatics in combination with
breeding would likely increase the ability of breeding crop species to be being used as biofuel feedstock
and therefore keep increasing the use of renewable energy in modern society.

In addition, genes from Bacillus thuringiensis which can control a number of serious pests have
been successfully transferred to cotton, maize and potatoes. This new ability of the plants to resist insect
outbreak may decrease the number of used insecticides and therefore will increase the nutritional
quality of the crops (Fig. 6).
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Scientists have recently succeeded in transferring genes into rice to enlarge the levels of Vitamin
A, iron and other micronutrients. This success could have a deep impact in reducing incidents of
blindness and anemia caused by deficiencies in Vitamin A and iron respectively (Fig. 7.1, 7.2).
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Another example is the achieved progress in developing cereal varieties that have a greater
tolerance for soil alkalinity, free aluminium and iron toxicities. These varieties will let agriculture
succeed in poorer soil areas, therefore adding much more land to the global production base.

In this regard, the purpose of plant genomics is to understand the genetic and molecular basis
of all biological processes in plants which are corresponding to the species. This understanding is
fundamental because it will allow efficient exploitation of plants as biological resources in the evolution
of new cultivars with improved quality and reduced economic and environmental costs. Traits of
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primary interest are, pathogen and abiotic stress resistance, quality characteristics for plant, and
reproductive characteristics determining yield.

Agriculturally important biological database

At the beginning of the “genomic revolution”, the fundamental task of bioinformatics was to
establish and maintain databases to store biological information like nucleotide and amino acid
sequences.

A biological database is a big, organized form of constant data, which is generally related to
computerized software projected to update, query, and retrieve components of the information stored
within the system. For example, a record related to a nucleotide sequence database normally contains
data like contact name; the input sequence with a description of the type of molecule; the scientific
name of the source organism from which it was isolated; and, frequently, literature citations related to
the sequence.

The development of the database include not only design and store information but also the
elaboration of user friendly GUI (graphical user interface) so investigators could both access existing
data and submit new or revised data e.g., ,

There are many helpful databases where we can obtaln the corresponding information about
specific plant species.

For example 2.0 database is a plant gene family database based on the inferred
proteomes of five sequenced plant species: Arabidopsis thaliana, Carica papaya, Medicago truncatula,
Oryza sativa and Populus trichocarpa. It uses the graph-based clustering algorithm MCL to categorize
all of these species’ protein-coding genes into supposed gene families, also called tribes, using three
clustering stringencies (low, medium and high). For all tribes, it generates protein and DNA alignments
and maximum-probability phylogenetic trees (Fig. 8).
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FGP :: Taxa :: Cucumis sativus

Common Name: cucumber

Family: Cucurbitaceae

Range:

Description:

Reason for Sampling: Cucumber (C. sativus) was selected from among many economic species in the largs
eurosid | clade. A member of the Cucurbitaceae (squash, pumpkin, cucumbers), it is an imgortant New World fruit
crop species. Cucumis is not pr ne focus of intensive publicly funded genome research. This species is
transformable, has a small genome (882 Mtp), and is diploid, with 2n = 14. Cucumis is dicecious, so two libranes
will b= sampled from male and femals floral tissues, and EST sequencing will be performed s=parately on each
library

issue Information

Source(s) of plants Isreal (2003-07-30)
Storage location of plants
Tissue type Flowsr Bud (<1)
# of source plants
Source(s) of tissue
Collection Date 2003-07-30 (lsreal )

v

Source(s) of plants |sreal (2003-07-30)
Storage location of plants
Tissue type Flower Bud (<1)
# of source plants
Source(s) of tissue |Isreal
Collection Date 2002-07-30 (Isr=al )

Library Information
cDNA library status cs307 (complete)
Library completion date 2003-07-30
Vector pBlusscript SK +/-

Host SOLR
Primers
Cloning Sites 5'- EcoRl; 3" - Xhol

oRI; 3'
Antibiotic 100ug/m!amp
Signature sequence GCACGA
Primary library titer
Amplified library titer 2.3 x10*Spfulul
Average insert size 600

cDNA library status cs302 (complete)
Library completion date 2002-07-20
Vector pBlusscript
Host SOLR
Primers
Cloning Sites 5'-EcoRI; 3' -Xhol
Antibiotic 100ug/miamp
Signature sequence GCACGA
Primary library titer
Amplified library titer
Average insert size

Fig. 8. PlantTribes 2.0 database

There is also a parallel database of microarray experimental results related to the genes, which
allows explorers to identify groups of associated genes and their expression patterns.

SuperTribes, built via second iteration of MCL clustering, connect distant, but potentially
related gene clusters. All information and analyses are available by a flexible interface allowing users
to explore the classification, to place query sequences within the classification, and to download results
for further study.

In his latest version, they have import additional another fine scale classification for identifying
orthologous genes based on OrthoMCL algorithm.

Another database, the database, characterizes a big integrative collection of the
structural and functional annotations, and ESTs from six different plant species. Additionally, there are
also information about novel gene predictions, mutant tags, gene families, protein motifs, transcriptome
data, repeat sequences, primers and tags for genomic approaches, subcellular targeting, secondary
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structures, tertiary models, curated annotations and mutant phenotypes, which are accessible in this
database (Fig. 9).

Data available for Oryza sativa

STRUCTURAL DATA NUMBER ORIGIN
genome version v6.0 TIGR-JCVI
annotated genes 41439 TIGR-JCVI
transposable elements 16 185 TIGR-JCVI
predicted pseudogenes 62 TIGR-JCVI
EST and cDNA 1120229 URGV, IBP, NCBI (SIM4)
tRNA genes 718 TIGR-JCVI
FUNCTIONAL DATA NUMBER ORIGIN
FST 79612 CIRAD, GENOPLANTE, PMBBRC, NIAS
GO classifications 17 516 Vi
predicted subcellular localization 24133 URGV (PREDOTAR, WolfPSORT, ChloroP)
functional annotations 57 686 TIGR-JCVI
PPR motifs 5868 URGV (HMMER)
PPR genes 477 URGV
TM proteins 9433 URGV (TMHMM)
protein motifs 60 789 URGV (PFAM, HMMER)
gene families 2987 URGV (PFAM, HMMER)
Data available for Vitis vinifera
STRUCTURAL DATA NUMBER ORIGIN
genome version v2.0 (12x) French-Italian public consortium
annotated genes (v0) 26 346 Genoscope (GAZE)
EST and cDNA 419 542 URGV, Genoscope, NCBI (SIM4)
repeat elements 336 688 Genoscope
predicted EuGéne CDS 44 407 URGV, Migale, BIA
predicted CDS (v1) 29970 CRIBI (JIGSAW, GAZE)
FUNCTIONAL DATA NUMBER ORIGIN
probes for SNP discovery 12949 1BP, SNPGrapMap
predicted subcellular localization 10 231 URGV (PREDOTAR, WolfPSORT, ChloroP)
functional annotations 26 346 URGV
CHS genes 14 URGV, UBC
STS genes 48 URGV, UBC
TPS genes 152 URGV, UBC
RGA genes (chr 12) 91
TM proteins 6090 URGV (TMHMM)
protein motifs 32375 URGV (PFAM, HMMER)
gene families 2967 URGV (PFAM, HMMER)

Fig. 9. Data available in FlagDB database (FLAGdb++ v6.2)

Another important example is the Plant genome database: PlantGDE is a catalogue of genomic
sequences of all the plant species, created for the purpose to perform comparative genomics. This

database also classifies EST sequences into contigs which could characterize and distinguish unique
genes (Fig. 10).
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AcDs Tagging » More about Release 187.. » More about Genome Browsers. Y
ASIP ~ Medicago genome updated
SRGD " (Feb 27,2012
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Fig. 10. The Plant genome database: PlantGDB
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Other agriculturally important databases along with description and URL are given at

Plant genomics

The role of model organism

Over the final century, the investigation and research on a few number of life forms has played
an essential role in our understanding of various biological cycles and processes. This is because
numerous aspects of science, especially biological processes, are comparable in most even in all living
organisms. However, often it is much easier to explore a specific aspect or process in one organism
than in others. In this case, these organisms are commonly suggested as model organisms, because their
characteristics make them appropriate for laboratory study.

In 1980s, much more people started to think that major investments in studies of numerous
different plants like corn, oilseed rape or soybean will dilute efforts to fully understand the main
properties of all plants. Moreover, scientists started to realize that their purpose of fully understanding
the plant physiology and development is so ambitious that the best decision is to use a model plant
species that many scientists can solely explore.

The most well known model organisms have to possess solid preferences for experimental
research, such as fast development with short life cycle, small adult measures, ready availability, and
tractability. Due to the exstensive study of their characteristics these model organisms become even
more valuable. In this point a huge amount of data can be determined from these organisms, giving
important information for the analysis of normal human or crop development; gene control, genetic
infections and deseases, and evolutionary forms.

For example, Medicago (alfalfa) is a real brilliant diploid which has a significant role in fixing
soil nitrogen and has a major part of forage diets. Other grasses and legumes are being also used for
extensive EST sequencing and for genetic maps construction. Luckily, the total sequencing of all the
genes of one representative plant species will give much more knowledge and information for all higher
plants. Also, using model species will further expand the knowledge about all higher plants, especially
in revealing the role of proteins and discovery of their functions. For example, the comparison of
genome sequences of rice and Arabidopsis revealed planty of useful information for plant genomics
because of their extensive but complex designs of synthesis.

Arabidopsis thaliana has become a well-known model plant for most of the researchers. In spite
of the fact that it is a non-commercial plant, it is preferred because of its reproduction, development
and reaction to stress and disease in the same way as many crop plants. Arabidopsis thaliana has a
small genome which does not have the repeated, less-informative DNA sequences that hinder genome
analysis performance. Its advantages are that it has large genetic and physical maps of all 5
chromosomes ( ); a fast life cycle (around 6 weeks from seed germination to grown seed);
productive seed manufacture and simple cultivation in limited space; a huge number of mutant lines
and genomic resources (Stock Centers) and multinational research society of academic, government
and industry laboratories.

The whole genome of Arabidopsis has duplicated once throughout its evolution and this event
is followed by subsequent gene loss and extensive local gene duplications. The genome has 25,498
genes encoding proteins from 11,000 families (Fig. 11).
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Fig. 11. Analysis of Arabidopsis thaliana

Like other model organisms, there is much more information for Arabidopsis genome than the
complete genome sequence. The website for the Arabidopsis Information Resource, , allows
explorers to integrate the genome sequence with a large EST database and with the genetic and physical
maps, offers links to functional and molecular genetic information and the literature for specific genes
and indicates an ever expanding list of mutant stocks.

Alternative plants that are used as model organisms for research are tomatoes, rice, maize and
wheat, because of their significant characteristics.

All the available research and genetic data for different model plants are uploaded on
corresponding websites. Generally, they are made by particular research groups who integrate the
research efforts from all over the world. A few valuable websites include the , the

and organism-specific resources like . These sites aim to link
seed stock and actual genetic resources to virtual information on linkage mapping information. That is
why various search engines and complex relational databases are under development.

Managing and distributing plant genome data

Genome science has profited significantly from the progress in computing capabilities and
bioinformatics, as with numerous areas of science and technology. The growth of the Internet has been
vital for genome researchers as well as the improved computational speed.

In conjunction with the development of modern database technology, the World Wide Web has
become the native medium for managing and disseminating genomic resources and this led to the
creation of shared public resources, which were used for searching and analyzing the contents of
genomic databases. Some of the Websites like and give quick access to colossal amounts
of information and analysis tools, free of charge, from anyplace of the globe. In addition, the advantages
of networking have been important for the management of laboratory data with little or no human
intervention.
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LIMS or laboratory information management systems, let users at different workstations or
geographic locations to browse, edit, analyze and comment the data. The main part of the genomic data
Is a database system and most databases can be classified as either relational databases (RDB) or object-
oriented databases (OODB) (Fig. 12).

“ LabLite - Laboratory Management System - [Log In] E]@
File LabTasks Clients Projects Reporting Help
B, .
.

Sampler's name Sampler Job Login initials Batch # 1 Bottles
I o =] Jm of = [
Identification | Sample Dates | Analysiz requested | Container Description |

Sample Description Sample Souce Mailing address
Project: | j | j Clignt

Cliert: ~|e Address 1

Site: = Address 2

b atrix type: -~ e City

State [
Zip I—
Contact(z] I—L|
Print repart m

Fig. 12. Laboratory information management systems (LIMS)

There are three essential sequence databases: GenBank (NCBI), the Nucleotide Sequence
Database (EMBL) and the DNA Databank of Japan (DDBJ) which are repositories for plant raw
sequence information. So also, SWISS-PROT and TrEMBL are the major essential databases for the
storage of plant protein sequences. There are also secondary databases such as PROSITE, PRINTS and
BLOCKS and the sequences they contain are not raw data, but are derived from the data in the primary
databases.

The early bioinformatics databases emphasized primary on data capture. To the early part of
this decade the emphasis moved from information capture to information aggregation and integration.
Model Organism Databases (MODs), integrated depositories of all the electronic data resources relating
to a specific experimental plant or animal species, became the first choice of the bioinformatics world.
Integrating numerous types of biological information over several species, these resources enable
analysts to make disclosures that wouldn't be possible by analyzing a single species alone. These
systems integrate information on numerous organisms and use comparative analysis to find patterns in
genome that might otherwise be missed.

The maize genome, for example, is around the same length as the human genome, and won’t be
fully sequenced for another few years, but the rice which is one tenth the size of human’s, is already
sequenced. Because the two grains are closely related in evolutionary aspect, specific maps have been
successfully created that relate maize’s genetic map to the rice genome sequence. This lets analysts to
follow a genetically mapped characteristic in maize, such as tolerance to high salt levels in the soil, and
move into the relevant region in the rice genome, thereby recognising candidate genes for salt tolerance.

Currently, different bioinformatics approache are applied when studing plant genome data.
Some of the most popular are:

Sequence alignment methods and applications for comparing genome sequences: The progress
of technologies for the large scale quantification and identification of biological molecules combined
with the progress of computing technologies and the internet has contributed to facilitate the delivery
of major volumes of biological data to the analysts. The increased productivity was gained through
automation, miniaturization, and integration of technologies and applying this approach to the assays
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of other biological molecules including mRNA, proteins, and metabolites has effected in a large
increase in the generation of biological information.

Very often the main essence of the bioinformatics strategies for sequence alignment is the
comparison of cDNA/EST and genomic sequences and annotation. In addition to whole genome
sequencing, plant sequence information have been collecting from three main sources: sample
sequencing of bacterial artifcial chromosomes (BACs), genome survey sequencing (GSS) and
sequencing of expressed sequence tags (ESTS).

Sequence alignment: This is the arrangement of two or more amino acid or nucleotide sequences
from an organism or organisms in such a way as to adjust areas of the sequences sharing common
properties. Well known versions for pairwise alignment are the Smith-Waterman algorithm for local
alignment and the Needelman-Wunsch algorithm for global alignment.

Multiple sequence alignment: Multiple alignment demonstrates relationships between two or
more sequences. When the involved sequences are different, the conserved residues are often key
residues related to maintenance of structural stability or biological function. Multiple alignments can
divulge a lot of clues about protein structure and function. The most commonly used alignment software
is the ClustalW package.

Sequence Similarity Searching Algorithms: Possibly the most used of these are and

. Both tools BLAST and FASTA provide very fast searches of sequence databases (Fig 13, 14).

I tucoisn | Ganomes | erotecrme | Whole Ganore Shuknm | s serics | o i i section +

Protein Similarity Search

BLAST Genomes

Fig. 13. FASTA Fig. 14 BLAST

Genome Comparison Tools: MegaBlast is NCBI BLAST based algorithm for large sequence
similarity search. MegaBlast is used to liken the raw genomic sequences to a database of contaminant
sequences.

Expressed sequence tags (ESTs): ESTs are fractional, gene sequences which have been
produced or are in the process of being produced in several laboratories using different species and
cultivars as well as diversed tissues and developmental stages. ESTs are now widely used throughout
the genomics and molecular biology society for gene discovery, mapping, polymorphism assay,
expression studies, and gene prediction.

Molecular plant breeding

Because the resolution of genetic maps in the important crops expands, and because the
molecular basis for particular characteristics or physiological responses becomes better clarified, it will
be much more possible to associate candidate genes, found in model species, with relevant loci in crop
plants. Appropriate relational data will make it possible to freely connect through genomes with regard
to gene sequence, supposed function, or genetic map position.
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Once this kind of tools have been realized and implemented, the difference between breeding
and molecular genetics will disappear. Breeders will use computer models to formulate predictive
hypotheses to establish phenotypes of interest from difficult complex allele combinations, and then
make those combinations by scoring major populations for a lot of numbers of genetic markers (Fig.
15).
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Fig. 15. Reverse genetics in perennial ryegrass

The tremendous resource including breeding knowledge collected over the last decades will
become straight linked to basic plant biology, and will increase the ability to clarify gene function in
model organisms. For example, characteristics which are badly determined at the biochemical level but
well established as a visible phenotype can be related to high resolution mapping with candidate genes.

Orthologous genes in a model species, such as Arabidopsis or rice, may not have a well known
connection with a quantitative characteristic like that seen in the crop, but might have been involved in
a specific pathway or signaling chain by genetic or biochemical tests. This kind of cross-genome
referencing will guide to a convergence of economically corresponding breeding information with main
molecular genetic data.

The particular phenotypes of commercial interest which are expected to be spectaculary
improved by this progress include both the improvement of factors which frequantly limit agronomic
performance (input traits) and the change of the amount and type of materials that crops produce (output
traits). Examples include:

- abiotic stress tolerance (cold, drought, immersion, salt);

- Dbiotic stress tolerance (fungal, bacterial, viral);

- nutrient use efficiency;

- management of plant architecture and progress (size, shape, number, and position,
timing of evolution, senescence);

- metabolite division (redirecting of carbon flow through existing pathways, or moving
into new pathways).
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Rational plant improvement

The implications of genomics with relation to food, feed and fibre production can be visualized
on a lot of fronts. At the most essential level, the progress in genomics will considerably speed up the
acquisition of knowledge and that, in turn, will directly effect on many aspects of the processes
associated with plant improvement. Knowledge of the function of all plant genes, according to the
further elaboration of tools for modifying and examining genomes, will lead to the evolution of an
original genetic engineering paradigm in which rational changes can be intented and modelled from
first principles.

The goal of plant genomics is to understand the genetic and molecular basis of all
biological processes in plants which are related to the species. This understanding is essential to allow
efficient maintenance of plants as biological resources in the development of new cultivars with
improved quality and reduced economic and environmental costs (Fig. 16).
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Fig. 16. Plant improvement

This knowledge is also fundamental for the progress of new plant diagnostic tools.
Characteristics which are considered of primary importance are, pathogen and abiotic stress resistance,
quality traits for plant, and reproductive traits defining output. A genome program can now be
envisioned as an extremely important tool for plant improvement.

Such an approach to determine key genes and understand their function will result in a “quantum
leap” in plant improvement. Additionally, the capability to explore gene expression will let us realize
how plants react to and interact with the physical environment and management practices.

This information, together with suitable technology, may provide predictive measures of plant
health and quality and become an essential part of future plant breeding solution management systems.
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Current genome programs produce a large amount of information which will require processing,
storage and alignment to the multinational research society. The data incorporate not only sequence
information, but information on mutations, markers, maps, functional discoveries, etc. Key objectives
for plant bioinformatics include: to favor the submission of all sequence data into the public domain,
by repositories, to supply rational annotation of genes, proteins and phenotypes, and to make
relationships both within the plants’ data and between plants and other organisms.

Genotype building experiments

In the last few years an increasing amount of data for the DNA polymorphism and sequencing
was collected in different plant varieties and cultivars. Most of this data was used for the goal of
recognition of various cultivars as well as for their comparison of distances and analogy. This kind of
distances are measured by the polymorphism on a part of the chromosome with unknown function.

This kind of polymorphism is widely used in the genomic learning through the species. The
information for the polymorphism are analyzed for a potential link with a quantitative characteristic of
interest of the particular phenotypes. As such a link is discovered it is called indirect marker. Indirect
markers are closely linked, occasionally they may overlap, with a locus which identify this quantitative
characteristic, QTL.

QTLs are determined as genes or regions of chromosomes which affect a particular trait. QTLS
by themselves are very difficult to be recognized. In both cases this data, or as it is called, markers, can
be used in further selection goals. This selection process is named as MAS.

QTLs (Quantitative Trait Locus) analysis and mapping

QTLs and mapping: The main problem is to determine which populations are appropriate for
QTL-analyses, unstructured and F2 crosses and in plant - large scale populations in order to screen for
potential QTLs. Because selection is based most on markers, higher density of mapping is extremely
important. The interval between marker and QTL of about 5 centi Morgans (cM) seemed enough for
effective selection. However, the simulation studies indicate that selection precision dropped down to
81% and 74% with 2 cM and 4 cM distance compared to 1cM (Fig. 17).
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Fig. 17. QTL mapping of the gGW-5 locus

Use of QTL information: It is supposed to be that some but not all loci are determined, so
selection should be based on the combination of phenotypic and molecular data; in the process of
selection, the link of markers and traits could reduce so this link should be observed over the
generations; in the process of selection, QTLs demonstrate contemporaneous existence of the wanted
genes in a line; in crossbred programs, QTLs could predict the efficiency of untested crosses, including
their non-additive effect on the data of the parent lines and restricted number of crosses.

Future prospective: With cumulation of molecular data genotype building programs will be
elaborated which will define homozygous desirable markers; in introgression programs for combining
the intended traits from two lines in one; finally, the real world of agriculture is on the stage of
accumulation of molecular information.

Analytical approaches: One of the statistical tools for making the QTL analyses such is the
meta-analysis, which synthesize solid QTL data and improve the QTL position. A program of this class
is the French BioMercator. Also , the European plant genome database network, which is
available at is an environment with complex research opportunities.

Further progress and detailed discussion on QTLs involves the statistical aspects of MAS,
setting up the threshold of importance of marker effects, overestimation or deviation in estimation of
QTL effects, optimization of selection programs for various generations with concomitant using of
MAS and phenotypic data. A particular feature is that discovery should be made on plant specific parts,
leaves, roots, fruits etc., as it was proved for the grapes.

Experimental results not all the time verify the efficiency of MAS as regards to the genotype
building. The major reason is insufficient accuracy of the primary assessment of a QTL, its place and
effect. Also some QTLs could be lost in the genotype building process. For complex productivity traits
the epistatic waste would be a reason for changes in the value of QTL effect in the parent and progeny
generation. Then it is recommended that election is based on the allelic combinations rather on the
separate QTLSs. It is in accordance to the numerous GXE interactions and with the selection within the
environment of interest in the case of disease/drought resistance. Therefore, efficiency of MAS will
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depend on the complexity of species/trait genetic architecture, on the progress of the characteristic in
the environment and on their interaction.

For complex traits the assessment of QTLs should be in different environments. Also
phenotypic evaluation/check over the consistent generations is absolutely necessary. For example:
drought resistance seemed to be more complex trait vs. disease resistance.

From the economics point of view the use of markers will cost collection of DNA, genotyping,
analyses, and discovery of QTLs etc. This high value is paid for the genotype building for
characteristics which are expensive for evaluation, disease resistance, or characteristics with low
heritability.
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Introduction

Environmental pollutants have become a major global concern, given their undesirable
recalcitrant and Xxenobiotic compounds. A variety of polycyclic aromatic hydrocarbons (PAHS),
xenobiotics, chlorinated and nitro-aromatic compounds were depicted to be highly toxic, mutagenic
and carcinogenic for living organisms.

Some of the sources of these contaminants are; chemical (dying, agriculture, pharmaceuticals,
etc) petrochemical (oil rafineries, fuel spills), metal (iron and steel industry, shipbuilding, etc.) energy
(power plants), mining industries and water supply and sewage works. These contaminants have
impacts on nature. While various physico-chemical processes have been developed for treating these
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pollutants; these approaches are often prohibitively expensive, non-specific, or have the potential for
introducing secondary contamination. However, microbial population may also degrade the pollutant
and considered as one of the environment friendly and cost-effective method for restorationof
ecological niches contaminated with chemical pollutants. As a result, there has been an increased
interest in eco-friendly bio-based treatments commonly known as bioremediation. Though
bioremediation has been used to varying degrees for more than 60 years, for example petroleum land
farming, it historically has been implemented as a very °‘black box’ engineering solution
whereamendments are added and the pollutants are degraded. This approach is often successful but all
to often the results are less than desirable, that is, no degradation of the contaminant or even production
of more toxic daughter products. The key to successful bioremediation is to harness the naturally
occurring catabolic capability of microbes to catalyze transformations of environmental pollutants.

Bioremediation

Bioremediation is the exploitation of biological activities for mitigation (and wherever possible
complete elimination) of the noxious effects caused by environmental pollutants in given sites. If the
process occurs in the same place afflicted by pollution then an in situ bioremediation scenario occurs.
In contrast, deliberate relocation of the contaminated material (soil and water) into a different place to
intensify biocatalysis originates an ex situ case. In bioremediation, microorganisms with biological
activity, including algae, bacteria, fungi, and yeast, can be used in their naturally occurring forms.

Figure 1. Types of microorganisms used in bioremediation processes (Coelho et al. 2015).

Figure 1 shows the main types of microorganisms used in these processes, based on a search for
papers reporting microorganisms and bioremediation studies the microorganisms that have been most
commonly used are bacteria and fungi, although yeast and algae are also frequently applied
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Types of organisms used in bioremediation

Typically, bioremediation is based on the cometabolism action of one organism or a consortium
of microorganisms. In this process, the transformation of contaminants presents a little efficiency or no
benefit to the cell, and therefore this process is described as nonbeneficial biotransformation. Several
studies have shown that many organisms (prokaryotes and eukaryotes) have a natural capacity to
biosorb toxic heavy metal ions. Examples of microorganisms studied and strategically used in
bioremediation treatments for heavy metals include the following: (1) bacteria: Arthrobacter spp.,
Pseudomonas veronii (Vullo et al. 2008), Burkholderia spp., Kocuria flava, Bacillus cereus and
Sporosarcina; (2) fungi: Penicillium canescens, Aspergillus versicolor, and Aspergillus fumigatus; (3)
algae: Cladophora fascicularis, Spirogyra spp. and Cladophora spp. and Spirogyra spp. and Spirullina
spp and (4) yeast: Saccharomyces cerevisiae and Candida utilis. Prokaryotes (bacteria and archaeans)
are distinguished from eukaryotes (protists, plants, fungi, and animals). The cellular structure of
eukaryotes is characterized by the presence of a nucleus and other membrane-enclosed organelles. Also,
the ribosomes in prokaryotes are smaller (70S) than in eukaryotes (80S). The way in which
microorganisms interact with heavy metal ions is partially dependent on whether they are eukaryotes
or prokaryotes, wherein eukaryotes are more sensitive to metal toxicity than prokaryotes. The possible
modes of interaction are (a) active extrusion of metal, (b) intracellular chelation (in eukaryotes) by
various metal-binding peptides, and (c) transformation into other chemical species with reduced
toxicity. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants
and convert them to harmless products. Bacteria and higher organisms have developed mechanisms
associated with resistance to toxic metals and rendering them innocuous. Several microbes, including
aerobes, anaerobes, and fungi, are involved in the enzymatic degradation process. Most of
bioremediation systems are run under aerobic conditions, but anaerobic conditions make it possible
microbial organisms to degrade otherwise recalcitrant molecules. Because several different types of
pollutants can be present at a contaminated site, various types of microorganisms are required for
effective remediation. Some types of microorganism are able to degrade petroleum hydrocarbons and
use them as a source of carbon and energy. However, the choice of the organisms employed is variable,
depending on the chemical nature of the polluting agents, and needs to be selected carefully as they
only survive in the presence of a limited range of chemical contaminants. The efficiency of the
degradation process is related to the potential of the particular microorganism to introduce molecular
oxygen into the hydrocarbon and to generate the intermediates that subsequently enter the general
energy yielding metabolic pathway of the cell. Some bacteria search the contaminant and move toward
it because they flexibly exhibit the potential as a chemotactic response. Numerous microorganisms can
utilize oil as a source of food, and many of them produce potent surface-active compounds that can
emulsify oil in water and facilitate its removal. Bacteria that can degrade petroleum products include
species of Pseudomonas, Aeromonas, Moraxella, Beijerinckia, Flavobacteria, Chrobacteria,
Nocardia, Corynebacteria, Modococci, Streptomyces, Bacilli, Arthrobacter, Aeromonas, and
cyanobacteria and some yeasts. For example, Pseudomonas putida MHF 7109 can be isolated from
cow dung microbial consortia for the biodegradation of selected petroleum hydrocarbon compounds,
such as benzene, toluene, and o-xylene (BTX).

Bioremediation strategies

In many cases the clean-up contaminated sites have been carried out using physical and
chemical methods such as immobilization, removal (dig and dump), thermal, and solvent treatments.
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However, advances in biotechnology have seen the development of biological methods of contaminant
degradation and removal, a process known as bioremediation. Potentially bioremediation is cheaper
than the chemical and physical options, can deal with lower concentrations of contaminants more
effectively, although the process may take longer.

The strategies for bioremediation in both soil and water can be as follows:

o Use the indigenous microbial population

o Encourage the indigenous population

o Bioaugmentation; the addition of adapted or designed inoculants
o Addition of genetically modified micro-organisms

o Phytoremediation

If the process occurs in the same place afflicted by pollution then an in situ bioremediation
scenario occurs. In contrast, deliberate relocation of the contaminated material (soil and water) into a
different place to intensify biocatalysis originates an ex situ case.

In situ and ex situ methods

Bioremediation technologies can be broadly classified as ex situ and in situ. Ex situ technologies
are those treatments which involve the physical removal of the contaminated material for treatment
process.

If the process occurs in the same place afflicted by pollution, then an in situ bioremediation
scenario occurs. These techniques are generally the most desirable options due to lower cost and less
disturbance since they provide the treatment in place avoiding excavation and transport of
contaminants. In situ treatment is limited by the depth of the soil that can be effectively treated. In many
soils, effective oxygen diffusion for desirable rates of bioremediation extend to a range of only a few
centimeters to about 30 cm into the soil, although depths of 60 cm and greater have been effectively
treated in some cases. The most important land treatments are:

Bioventing is the most common in situ treatment and involves supplying air and nutrients
through wells to contaminated soil to stimulate the indigenous bacteria. Bioventing employs low air
flow rates and provides only the amount of oxygen necessary for the biodegradation while minimizing
volatilization and release of contaminants to the atmosphere. It works for simple hydrocarbons and can
be used where the contamination is deep under the surface.

In situ biodegradation involves supplying oxygen and nutrients by circulating aqueous
solutions through contaminated soils to stimulate naturally occurring bacteria to degrade organic
contaminants. It can be used for soil and groundwater. Generally, this technique includes conditions
such as the infiltration of water-containing nutrients and oxygen or other electron acceptors for
groundwater treatment.

Biosparging involves the injection of air under pressure below the water table to increase
groundwater oxygen concentrations and enhance the rate of biological degradation of contaminants by
naturally occurring bacteria. Biosparging increases the mixing in the saturated zone and there- by
increases the contact between soil and groundwater. The ease and low cost of installing small-diameter
air injection points allows considerable flexibility in the design and construction of the system.

Bioaugmentation. Bioremediation frequently involves the addition of microorganisms
indigenous or exogenous to the contaminated sites. Two factors limit the use of added microbial
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cultures in a land treatment unit: 1) nonindigenous cultures rarely compete well enough with an
indigenous population to develop and sustain useful population levels and 2) most soils with long-term
exposure to biodegradable waste have indigenous microorganisms that are effective degrades if the
land treatment unit is well managed.

Ex situ bioremediation deliberate relocation of the contaminated material (soil and water) into
a different place to intensify biocatalysis originates an ex situ case. These techniques involve the
excavation or removal of contaminated soil from ground.

Landfarming is a simple technique in which contaminated soil is excavated and spread over a
pre- pared bed and periodically tilled until pollutants are degraded. The goal is to stimulate indigenous
biodegradative microorganisms and facilitate their aerobic degradation of contaminants. In general, the
practice is limited to the treatment of superficial 10-35 cm of soil. Since landfarming has the potential
to reduce monitoring and maintenance costs, as well as clean-up liabilities, it has received much
attention as a disposal alternative.

Composting is a technique that involves combining contaminated soil with nonhazardous
organic amendants such as manure or agricultural wastes. The presence of these organic materials
supports the development of a rich microbial population and elevated temperature characteristic of
composting.

Biopiles are a hybrid of landfarming and composting. Essentially, engineered cells are con-
structed as aerated composted piles. Typically used for treatment of surface contamination with
petroleum hydrocarbons they are a refined version of landfarming that tend to control physical losses
of the contaminants by leaching and volatilization. Biopiles provide a favorable environment for
indigenous aerobic and anaerobic microorganisms.

Bioreactors. Slurry reactors or aqueous reactors are used for ex situ treatment of contaminated
soil and water pumped up from a contaminated plume. Bioremediation in reactors involves the
processing of contaminated solid material (soil, sediment, sludge) or water through an engineered
containment system. A slurry bioreactor may be defined as a containment vessel and apparatus used to
create a three-phase (solid, liquid, and gas) mixing condition to increase the bioremediation rate of soil-
bound and water-soluble pollutants as a water slurry of the contaminated soil and biomass (usually
indigenous microorganisms) capable of degrading target contaminants. In general, the rate and extent
of biodegradation are greater in a bioreactor system than in situ or in solid-phase systems because the
contained environment is more manageable and hence more controllable and predictable. Despite the
advantages of reactor systems, there are some disadvantages. The contaminated soil requires
pretreatment (e.g., excavation) or alternatively the contaminant can be stripped from the soil via soil
washing or physical extraction (e.g., vacuum extraction) before being placed in a bioreactor. Table 1
summarizes the bioremediation strategies.
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Table 1. Summary of bioremediation strategies

Technology [Examples Benefits Limitations Factors to consider
Biodegradative
abilities of indigenous
microorganisms

i Presence of metals
o ~ |Most cost efficient E:r:/sltr;r:rrzg ntal and other inorganics
In situ bioremediation [Noninvasive )

In situ Biosparging Relatively passive  |[Extended treatment |[Environmental
Bioventing Natural attenuation  [time parameters
Bioaugmentation processes T Biodegradability of

Treats soil and water | o0 o"Ing pollutants

difficulties ) N
Chemical solubility
Geological factors
Distribution of
pollutants

Space requirements

Extended treatment

. Cost efficient “”.‘e _Need to control
. Landfarming abiotic loss
Ex situ . I Low cost See above
Composting Biopiles . Mass transfer
Can be done on site
problem
Bioavailability
limitation
Rapid degradation
Kinetic
Op'glmlzed Soil requires See above
environmental excavation . :
. . Bioaugmentation
parameters Relatively high cost icity of

Bioreactors SIUTTY reactors capital Toxicity 0

Aqueous reactors amendments
Enhances mass i .
. . [Toxic concentrations
transfer Relatively high X
. of contaminants
Effective use of Operating cost
inoculants and
surfactants
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Advantages and disadvantages of bioremediation

Advantages

« Bioremediation is a natural process and is therefore perceived by the public as an acceptable waste
treatment process for contaminated material such as soil. Microbes able to degrade the contaminant
increase in numbers when the contaminant is present; when the contaminant is degraded, the
biodegradative population declines. The residues for the treatment are usually harmless products
and include carbon dioxide, water, and cell biomass.

» Theoretically, bioremediation is useful for the complete destruction of a wide variety of
contaminants. Many compounds that are legally considered to be hazardous can be transformed to
harmless products. This eliminates the chance of future liability associated with treatment and
disposal of contaminated material.

+ Instead of transferring contaminants from one environmental medium to another, for example, from
land to water or air, the complete destruction of target pollutants is possible.

« Bioremediation can often be carried out on site, often without causing a major disruption of normal
activities. This also eliminates the need to transport quantities of waste off site and the potential
threats to human health and the environment that can arise during transportation.

« Bioremediation can prove less expensive than other technologies that are used for clean-up of
hazardous waste.

Disadvantages

« Bioremediation is limited to those compounds that are biodegradable. Not all compounds are
susceptible to rapid and complete degradation.

« There are some concerns that the products of biodegradation may be more persistent or toxic than
the parent compound.

» Biological processes are often highly specific. Important site factors required for success include
the presence of metabolically capable microbial populations, suitable environmental growth
conditions, and appropriate levels of nutrients and contaminants.

« Itis difficult to extrapolate from bench and pilot-scale studies to full-scale field operations.

» Research is needed to develop and engineer bioremediation technologies that are appropriate for
sites with complex mixtures of contaminants that are not evenly dispersed in the environment.

Contaminants may be present as solids, liquids, and gases.

» Bioremediation often takes longer than other treatment options, such as excavation and removal of
soil or incineration.

* There is no accepted definition of “clean”, evaluating performance of bioremediation is difficult,
and there are no acceptable endpoints for bioremediation treatments (Vidali, 2001).
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Environmental factors for bioremediation

Nutrients

Although the microorganisms are present in contaminated soil, they cannot necessarily be there
in the numbers required for bioremediation of the site. Their growth and activity must be stimulated.
Biostimulation usually involves the addition of nutrients and oxygen to help indigenous
microorganisms. These nutrients are the basic building blocks of life and allow microbes to create the
necessary enzymes to break down the contaminants. All of them will need nitrogen, phosphorous, and
carbon. Carbon is the most basic element of living forms and is needed in greater quantities than other
elements. In addition to hydrogen, oxygen, and nitrogen it constitutes about 95% of the weight of cells.

Phosphorous and sulfur contribute with 70% of the remainders. The nutritional requirement of
carbon to nitrogen ratio is 10:1, and carbon to phosphorous is 30:1.

Environmental requirements

Microbial growth and activity are readily affected by pH, temperature, and moisture. Although
microorganisms have been also isolated in extreme conditions, most of them grow optimally over a
narrow range, so that it is important to achieve optimal conditions. If the soil has too much acid it is
possible to rinse the pH by adding lime. Temperature affects biochemical reactions rates, and the rates
of many of them double for each 10 °C rise in temperature. Above a certain temperature, however, the
cells die. Plastic covering can be used to enhance solar warming in late spring, summer, and autumn.
Available water is essential for all the living organisms, and irrigation is needed to achieve the optimal
moisture level. The amount of available oxygen will determine whether the system is aerobic or
anaerobic. Hydrocarbons are readily degraded under aerobic conditions, whereas chlorurate
compounds are degraded only in anaerobic ones. To increase the oxygen amount in the soil it is possible
to till or sparge air. In some cases, hydrogen peroxide or magnesium peroxide can be introduced in the
environment. Soil structure controls the effective delivery of air, water, and nutrients. To improve soil
structure, materials such as gypsum or organic matter can be applied. Low soil permeability can impede
movement of water, nutrients, and oxygen; hence, soils with low permeability may not be appropriate
for in situ clean-up techniques.

Influence of environmental factors on biodegradation

Earlier studies of bioremediation trials were not performed under natural environmental
conditions. Therefore, the impact of environmental factors on the bioremediation process was never
expected. However, after the investigation of in situ bioremediation approaches now it is feasible to
understand the bioremediation process is influenced significantly by environmental factors such as the
physiological and chemical ambience of the contaminated environment, bioavailability of nutrients,
concentration and properties of co-contaminants, level of contamination, community organization of
the indigenous microbial communities. Various abiotic and biotic factors play important role in
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bioremediation. Their dynamic interactions occur in concrete abiotic conditions which are defined by
physico-chemical conditions like O> supply, electron transport, water, temperature, pH, salt
concentration, many of which. The above environmental factors determine the dynamic of endogenous
microbial community structures along with the availability of given chemical and energy source.

The factors at play in bioremediation scenarios include more elements than just the biological
catalysts and the contaminants discussed above. Their dynamic interactions occur in concrete abiotic
settings which are defined by a whole of physico-chemical conditions: Oz tension, electron acceptors,
water, temperature, granulation, and others, many of which change over time and the course of the
catalysis. Such abiotic conditions determine the species composition of the endogenous microbial
communities as much as (or more than) the availability of given chemical species as C and energy
source. Bioremediation is a case of multiscale complexity which is not amenable to the typically
reductionist approaches (e.g. one compound, one strain, and one pathway) that have dominated many
studies on biodegradation. How to overcome this impasse?

Since microbes are the drivers of bioremediation, shifts in the composition and activity of a
microbial community may impact the fate of a contaminant in the environment Recent studies have
employed next-generation sequencing approaches to better understand the microbial communities
involved in various bioremediation interventions. These approaches have greatly expanded our
understanding of the microbial processes involved in bioremediation as well as the impact of various
response strategies for contaminant cleanup. The use of molecular biology and metagenomics has also
greatly expanded our understanding of the biological systems found in these contaminated
environments and in many cases have greatly enhanced our understanding of the microbial world. Here,
we seek to provide a key background on metagenomic approaches and summarize how these tools have
been employed to understand contaminated environments in an effort to inform the best practices for
environmental cleanup.

Bioremediation requires the integration of huge amounts of data from various sources: chemical
structure and reactivity of organic compounds; sequence, structure and function of proteins (enzymes);
comparative genomics; environmental microbiology; and so on.

Systems biology

The process of bioremediation employs a microbial community to clean up an environmental
contaminant. The rates of contaminant detoxification are dependent on a number of factors including
the composition of the native microbial community, the environmental conditions, and the nature of
the contaminant. Therefore, optimization of bioremediation requires combining complex variables
together to understand and predict the fate of environmental contaminants. stems biology—the study
of the systematic properties and dynamic interactions in a biological system has been employed to
understand complex biological systems and how they will respond to various perturbations. A systems
biology approach to understanding environmental systems and bioremediation can be employed to
investigate complex environmental microbial communities and the environmental constraints on
contaminant degradation.

There is need to in silico study for predicting the possible degradation pathways by using various
computational tools. There are large number of databases and computer programs available to perform
the computational analysis for assisting the development and implementation of microbial
bioremediation. The huge data from biology mainly in the form of DNA, RNA and protein sequences
is putting heavy demand on computers and computational scientists. Systems biology is an integrated
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research approach to study complex biological systems, by investigating interactions and networks at
the molecular, cellular, community, and ecosystem levels. A systems biology approach is being adopted
to unravel key processes to understand, optimize, predict and evaluate microbial function and survival
strategies in the ecosystem of interest. To use a systems biology approach to bioremediation projects
they must involve the characterization of microbial community composition, cellular and molecular
activity and are complicated by the presence of toxic chemicals that alters the normal behavior of the
microbial community.

Some important components of systems biology are the use of computational approaches to
develop a predictive understanding of the systems response to a perturbation and understanding
contaminant remediation as it combines many levels of a system to predict the fate of environmental
contaminants.

It is strongly believed that there are three dimensions for the effectiveness of vital
bioremediation process; that is, chemical landscape (nutrients-to-be, electron donors/acceptors and
stressors) abiotic landscape, and catabolic landscape of which only the catabolic landscape is genuinely
biological. The chemical landscape has a dynamic interplay with the biological interventions on the
abiotic background of the site at stake. This includes humidity, conductivity, temperature, matrix
conditions, redox status, etc.

Catabolic

A

Rhizoremediation v v Phytoremediation

Abiotic Biotic

Natural Attenuation

Figure 2. Systems biology connections to bioremediation (Koehmel et al. 2016)

To gain an understanding of complex in situ bioremediation processes, monitoring techniques
that inventory and monitor terminal electron acceptors and electron donors, enzyme probes that
measure functional activity in the environment, functional genomic microarrays, phylogenetic
microarrays, metabolomics, proteomics, and quantitative PCR can provide unprecedented insights into
the key microbial reactions employed (Figure 3). In general terms, an ecosystem consists of
communities, populations, cells, protein, RNA, and DNA. We can analyze DNA, RNA, and protein at
the cellular levels to understand the impacts on the cells, and analyze community and populations to
understand effect of bioremediation on structure/function relationships (Figure 3).
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Ecosystem
Chemical analyses Seismic and radar tomographic monitoring
Isotope chemistry (Modeling, Geology, Hydrology, Metrology)

Community
Metagenomics 16S rRNA clone library
PhyioChip RFLP
Respiration
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Functional gene clone libraries Fluorescent antibody
Phenotypic microarray Proteogenomics
GeoChip FISH
qPCR Immunomagnetic separation
PLFA Enczyme activity
Stable isotope probing Respiration

Cell
Isolation FISH
Encsyme activity Fluxomics

Protein, Lipid & Metabolite
Prutein/Lipid identification
Metabolite profiling

Nucleic Acids (DNA & RNA)

Whole genome sequencing
Transcriptomics (RNA-seq)

Current Opinion in Biotechnology

Figure 3. Systems biology from molecules to ecosystems

A system-level understanding of a biological system can be derived from insight into four key
properties:

1) System structures. These include the network of gene interactions and biochemical
pathways, as well as the mechanisms by which such interactions modulate the physical properties of
intracellular and multicellular structures.

2) System dynamics. How a system behaves over time under various conditions can be
understood through metabolic analysis, sensitivity analysis, dynamic analysis methods such as phase
portrait and bifurcation analysis, and by identifying essential mechanisms underlying specific
behaviors. Bifurcation analysis traces time-varying change(s) in the state of the system in a
multidimensional space where each dimension represents a particular concentration of the biochemical
factor involved.

3) The control method. Mechanisms that systematically control the state of the cell can be
modulated to minimize malfunctions and provide potential therapeutic targets for treatment of disease.

4) The design method. Strategies to modify and construct biological systems having desired
properties can be devised based on definite design principles and simulations, instead of blind trial-
and-error.

Progress in any of the above areas requires breakthroughs in our understanding of computational
sciences, genomics, and measurement technologies, and integration of such discoveries with existing
knowledge.
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Omics approaches are central to systems biology. Metagenomics—the analysis of the total
genomic content of a microbial community—has been widely applied to understanding microbial
communities in environmental systems (Figure 4). Other ‘omics techniques, including
metatranscriptomics (community RNA analysis) and metaproteomics (community protein analysis),
have been more recently applied to environmental microbial communities.

Multiple approaches can be applied to understanding different levels of a microbial community.
Each of these techniques investigates a particular biological molecule (DNA, RNA, or Protein)
thorough analysis of each of these molecules extracted from an environmental community yields key
insights into the taxonomic composition a community, the functional potential of a community, or the
genes and proteins currently being expressed Techtman and Hazen, 2016.

Metagenomics

Genomic is a powerful computer technology used to understand the structure and function of
all genes in an organism based on knowing the organism’s entire DNA sequence. The field includes
intensive efforts to determine the entire DNA sequence of organisms and fine-scale genetic mapping
efforts. Metagenomics is the study of the genomes in a microbial community and constitutes the first
step to studying the microbiome. Metagenomics allows us to investigate the composition of a microbial
community. Genomic studies consider the genetic material of a specific organism, while metagenomics
(meta meaning beyond) refers to studies of genetic material of entire communities of organisms. This
process usually involves nextgeneration sequencing (NGS) after the DNA is extracted from the
samples. NGS produces a large volume of data in the form of short reads, from which a microbial
community profile or other information can be pieced together just like gathering information from the
pieces of a puzzle. Although whole-metagenome sequencing (WMS) provides a partial glimpse into
the functional profile of a microbial community, it is better inferred using metatranscriptomics, which
involves sequencing the complete (meta)transcriptome of the microbial community. Metagenomics
provides access to the functional gene composition of microbial communities and thus gives a much
broader description than phylogenetic surveys, which are often based only on the diversity of one gene,
for instance the 16S rRNA gene. On its own, metagenomics gives genetic information on potentially
novel biocatalysts or enzymes, genomic linkages between function and phylogeny for uncultured
organisms, and evolutionary profiles of community function and structure. It can also be complemented
with metatranscriptomic or metaproteomic approaches to describe expressed activities. Metagenomics
is also a powerful tool for generating novel hypotheses of microbial function; the remarkable
discoveries of proteorhodopsin-based photoheterotrophy or ammonia-oxidizing Archaea attest to this
fact. The rapid and substantial cost reduction in next-generation sequencing has dramatically
accelerated the development of sequence-based metagenomics. In fact, the number of metagenome
shotgun sequence datasets has exploded in the past few years. In the future, metagenomics will be used
in the same manner as 16S rRNA gene fingerprinting methods to describe microbial community
profiles. It will therefore become a standard tool for many laboratories and scientists working in the
field of microbial ecology.

Metagenomic approaches often take two forms—targeted metagenomics or shotgun
metagenomics (Figure 4). In targeted metagenomics—or microbiomics—the diversity of a single gene
is probed to identify the full complement of sequences of a particular gene in an environment. Targeted
metagenomics is most often employed to investigate both the phylogenetic diversity and relative
abundance of a particular gene in a sample. This approach is regularly used to investigate the diversity
of small subunit rRNA sequences (165/18S rRNA) in a sample. Microbial ecologists routinely use

16 |Page



APPLICATION OF SYSTEM BIOLOGY IN BIOREMEDIATION

small subunit rRNA sequencing to understand the taxonomic diversity of an environment. It can also
be applied as a tool to investigate the impact of environmental contaminants in altering microbial
community structure. To perform targeted metagenomics, environmental DNA is extracted, and the
gene of interest is PCR amplified using primers designed to amplify the greatest diversity of sequences
for that gene of interest. The strength of targeted metagenomics is that it provides a fairly
comprehensive catalog of the microbial taxa present in a set of samples and allows for in-depth
comparison of shifts in microbial diversity before and after a perturbation.

Environmental .

Microbial Community -
)

.--

| Extraction

| Sequencing H\I

\J v

Targeted Shotgun Meta- | Meta-proteomics I
Metag ics | | Metagenomics | | transcriptomics
A 4
Bioinformatic 1
analyses l \
Phylogenetic Genes and Microbial Microbial
Composition Functional Activity Activity
Potential

Figure 4. Metagenomic approaches to understanding microbial communities.

In shotgun metagenomics, the total genomic complement of an environmental community is
probed through genomic sequencing (Figure 4). In this approach, environmental DNA is extracted and
then fragmented to prepare sequencing libraries. These libraries are then sequenced to determine the
total genomic content of that sample. Shotgun metagenomics is a powerful technique where the
functional potential of a microbial community can be identified.

Shotgun metagenomics is often most limited by the depth of sequencing. Microarray-based
techniques have been developed. PhyloChip and GeoChip are the two most commonly used microarray
technologies. PhyloChip is a 16S rRNA-based microarray able to probe the diversity of 10,993 sub-
families in 147 phyla (Hazen et al. 2010). GeoChip is a functional gene microarray able to probe the
diversity of 152,414 genes from 410 gene categories. Microarray techniques are not dependent on the
depth of sequencing to provide comprehensive insights into the microbial community. They also have
the advantage of providing rigorous annotation for the various taxa/genes present on the chip
alleviatingthe limitation of the need for good homologs in the database to achieve accurate
classification. Microarray-based approaches are, however, limited in that only the genes on the chip
can be detected, thus limiting the potential for discovery of new genes or pathways in a sample.
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Microarray- based approaches are often a helpful complement to sequencing-based approaches as an
additional line of evidence.

Metatranscriptomics-metaproteomics-metabolomics

Using a proteomics approach, the physiological changes in an organism during bioremediation
provide further insight into bioremediation-related genes and their regulation.. Metatranscriptomics and
metaproteomics are increasingly being applied to environmental systems (Figure 4). These approaches
provide key insights into the actively expressed genes in a microbial community and are thus good
indicators for the microbial functions being expressed under the conditions at the time of sampling. In
metatranscriptomics, RNA is extracted from an environmental sample. The RNA is converted into
cDNA and sequenced in a similar fashion to metagenomics (Figure 4). This approach provides an
inventory of the actively expressed genes in a sample. Metaproteomics does not involve nucleic acid
sequencing, but rather high-resolution mass spectrometry combined with enzymatic digests of proteins
and liquid chromatography. Metaproteomics provides insights into the complement of proteins found
in an environmental sample including posttranslational modifications in proteins that may impact their
activity.

By focusing on what genes are expressed by the entire microbial community,
metatranscriptomics sheds light on the active functional profile of a microbial community. The
metatranscriptome provides a snapshot of the gene expression in a given sample at a given moment and
under specific conditions by capturing the total mMRNA. As for metagenomics, it is now possible to
perform whole metatranscriptomics shotgun sequencing. This (meta)genome-wide expression provides
the expression and functional profile of a microbiome. When processing reads, a typical
metatranscriptomics analysis pipeline will either (1) map reads to a reference genome or (2) perform
de novo assembly of the reads into transcript contigs and supercontigs. The first strategy, in a manner
similar to the alignment-based methods in WMS, maps reads to reference databases, thus gathering
information to infer the relative expression of individual genes. The second strategy infers the same but
with assembled sequences. The first strategy is limited by the information in the database of reference
genomes. The second strategy is limited by the ability of software programs to assemble contigs and
supercontigs correctly from short reads data. tools and techniques. The application of
metatranscriptomics to the study of the microbiome is far less common relative to other omics reviewed
in this article. Most analysis pipelines described in the literature were built ad hoc. The majority of
these methods follow the aforementioned first strategy based on read mapping.

Metabolomics is the comprehensive analysis by which all metabolites of a sample (small
molecules released by the organism into the immediate environment) are identified and quantified. The
metabolome is considered the most direct indicator of the health of an environment or of the alterations
in homeostasis (i.e. dysbiosis). Variation in the production of signature metabolites are related to
changes in activity of metabolic routes, and therefore, metabolomics represents an applicable approach
to pathway analysis. Additionally, the application of metabolomics for drug discovery and
pharmacogenomics represents a promising avenue for personalized medicine. The metabolomic profile
associated with the microbiome may show a strong dependence on environmental factors (e.g. diet,
exposure to xenobiotics, and environmental stressors), providing valuable information not just about
the characteristics of the microbiome but also about the interactions of the microbial community with
the host environment. Thus, metabolomics aims to improve our understanding of the role of the
microbiome in the transformation of nutrients and pollutants as well as other abiotic factors that may
affect the homeostasis of the host environment. The analysis pipeline for spectral metabolomic data
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involves three steps: (1) preprocessing, (2) statistical analysis, and (3) machine learning techniques for
pattern recognition. In the first step, denoising and peak-picking improve the quality of the data to be
processed.

Several in silico softwares, pipelines, web resources and algorithms have been developed to
interpret or correlate molecular and x-omics data. Nonetheless, bioinformatic resources of
bioremediation are still scarce. The University of Minnesota Biocatalysis/Biodegradation Database
(UMBBD) has enlisted 200 pathways, 1350 reactions, 1195 compounds, >1000 enzymes, 491
microorganism entries and 259 biotransformation rules encompassing microbial bioremediation
(http://lumbbd.msi.umn.edu/) (Gao et al. 2011). Metarouter is yet another system for maintaining
heterogeneous information related to bioremediation and biodegradation in a framework that allows
updating query modifications (Desai et al. 2010). The system can be accessed and administrated
through a web interface (Pazos et al. 2005). Other software platforms re: Kyoto Encyclopedia of Genes
and Genomes (KEGG) at http://www.genome.ad.jp/kegg/kegg.html. (Moriya et al. 2010); Boehringer
Mannhein  Biochemical Pathways (BMBP) on the EXPASy server, Switzerland
(http://www.expasy.org/cgi-bin/search-biochem-index); International Society for the Study of
Xenobiotics  (http://www.issx.org); PathDB; Methabolic Pathways Database at NCGR
(http://www.ncgr.org/Pathdb/) etc.

Existing computational database, software and tools and their collective integration will help
to determine the environmental fate of any compounds more precisely and accurately.

Practical Applications

Radionuclide biotransformation

Groundwater and soil at the Area 3 FRC site in Oak Ridge is not only contaminated with
Uranium (up to 200 mM), but poses a unique bioremediation problem due to its low pH (3), high nitrate
(200 mM), and high calcium concentrations along with presence of chlorinated organic solvents.
Research at this site by various investigators exemplifies successful application of systems biology
tools to reveal a deeper understanding of the microbiology at play in the subsurface. Previously, 16S
clone library-based community analysis during an in situ biostimulation test at this site have identified
Desulfovibrio,Geobacter, Anaeromyxobacter, Desulfosporosinus, Acidovorax, and Geothrix spp.
present concomitant with U(VI1) reduction (Cardenas et al. 2008). Clone libraries of functional gene
markers like dsrAB, nirK, nirS, amoA, and pmoA showed high microbial diversity in functional genes.
However, recent metagenomic analysis from well FW106 specifically using a random shotgun
sequencing-based strategy revealed a highly enriched community dominated by denitrifying b-
Proteobacteria and g-Proteobacteria. Geo-Chip analysis of several groundwater monitoring wells
reported widespread diversity of dsrAB genes, which showed that sulfate-reducing bacteria were key
players in U(VI) reduction. During the U(VI) reoxidation phase as studied in a sediment column with
samples from FRC, observed decrease in biomass, but increase in microbial activity. Using the
PhyloChip, the study showed no decline in Geobacter or Geothrix spp. during the reoxidation phase,
but members of Actinobacteria, Firmicutes, Acidobacteria, and Desulfovibrionaceae exhibited
increased abundance. GeoChip analysis during the reoxidation phase from field samples showed a
decline in dsr genes but reoxidation did not appear to effect microbial functional diversity suggesting
that the microbial community was able to recover and continue to reduce U(V1) in the post oxidation
phase
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Metals bioimmobilization

The Hanford 100H area adjacent to the Columbia River in Washington is contaminated with
Chromium (Cr) as a result of being a weapons production site. In 2004, Hydrogen Release Compound
HRCtm was injected in an effort to mediate sustained bioimmobilization of Cr(VI) in situ by
stimulating indigenous microbial flora Hubbard et al. (2008) used time-lapse seismic and radar
tomographic geophysical monitoring to determine spatiotemporal distribution of the injected HRC and
biogeochemical transformations associated with Cr(V1) bioremediation post injection of HRC. Direct
cell counts revealed that while cell numbers reached 108 cells/ml, Cr(VI) levels decreased from 100
ppb to below background levels within a year. PhyloChip analysis showed enrichment of sulfate
reducers along with nitrate reducers, iron reducers, and methanogenic populations during this time.
Targeted enrichments resulted in isolation of sulfate-reducing Desulfovibrio vulgaris like strain RCH1,
nitrate reducing strain Pseudomonas stutzeri strain RCH2, and iron-reducing strain Geobacter
metallireducens strain RCH3, all capable of Cr(V1) reduction. mFlowFISH (integrated fluorescence in
situ hybridization and flow cytometry) analysis was able to detect and sort Pseudomonads similar to
strain RCH2 directly from Hanford 100H field water samples collected in 2009 and 2010.

Hydrocarbon bioremediation

The dependence of petroleum-based energy source has fueled industrial growth and prosperity.
However, it also brought dispersal of hydrocarbons into different environments. Fortunately, the
organic nature of hydrocarbons enables microbes to metabolize these petroleum compounds as
substrates. Notable reviews on a systems biology approach to bioremediation are Atlas and Hazen
(2011), Harayama et al. (2004), Zhou et al. (2011), Fredrickson et al. (2008), de Lorenzo (2008) and
Chakraborty et al. (2012). The MC252 oil spill in the Gulf of Mexico in 2010 was the largest in US
history. Many environmental factors distinguished this spill from previous ones, including hydrocarbon
composition, environmental variables, depth of the spill, and the availability of systems biology tools.
Information on chemical analyses is crucial in support of a system’s biology approach for oil
bioremediation in the MC252 spill. While Camilli et al. (2010) concluded that microbial respiration
rates within the deep plume were extremely low based on dissolved oxygen concentration,
measurement of microbial respiration rates, enzyme activity, phosphate concentration, and polar
membrane lipid concentration in surface water affected by the oil spill. Edwards et al. (2011) concluded
that enzyme activities and respiration rates were found to be higher inside the oil slick. Valentine et al.
(2010) investigated the fate of methane, propane, and ethane gases of the deep hydrocarbon plume at
depth greater than 799 m, and found that propane and ethane were degraded faster than methane.13C-
labled substrates, as well as 13C and 3H tracers, were used to measure d13C-DIC. In another study,
methane was found to be the most abundant hydrocarbon released during the MC252 spill, and that
there was a rapid response of methanotrophic bacteria rapidly respiring the released methane.
PhyloChip, clone library, GeoChip, phospholipid fatty acid (PLFA), and isotope chemistry were used
to compare microbial communities inside and outside the deep plume (Hazen et al. 2010). The results
identified Oceanospirillales, which were found to degrade hydrocarbons at 58°C inside the plume. The
GeoChip demonstrated genes that were significantly correlated to concentration of oil contaminants,
such as phdC1 (naphthalene degradation), and alkB (oxidation of alkanes), as well as a shiftin C, N, P,
S cycling processes in the deep plume samples. The involvement of federal agencies and pending
lawsuits is the impetus for a concerted effort in collating all data collected resulting in a comprehensive
database useful for researchers. By integrating chemical analyses with studies utilizing a systems
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biology approach, there was an unprecedented near real-time understanding of chemical and biological
reactions involved in the hydrocarbon degradation. In order to gain a more comprehensive
understanding of the microbiological processes, data from transcriptomics studies will provide
information on whether the cultivatable dominant microbes are the in situ active ones, and proteomics
studies will identify enzymes central to hydrocarbon degradation.

Chlorinated solvents bioremediation

Chlorinated solvents, such as TCE and dichloroethene (DCE), are recalcitrant carcinogenic
compounds that persist in the environment once released. Microbes, such as Dehalococcoides, are
capable of using the chlorinated solvents as electron acceptors anaerobically and dechlorinating the
compounds to ethene. Another biodegradation pathway is the aerobic co-metabolism of the chlorinated
compounds to carbon dioxide and chloride by microbes such as methane-oxidizers with methane
monooxygenases (MMOQOs) (. Descriptions of techniques that monitor mass loss, geochemical
fingerprints, isotope fractionation associated with biodegradation, microbial communities in
biostimulation and natural attenuation studies, quantitative real-time PCR methods targeting reductive
dehalogenase genes are included in several reviews. Between 1955 and 1972, low-level radioactive
isotopes, sewage and chlorinated solvents were injected into the aquifer through a 95 m deep well at
Test Area North (TAN) in Idaho National Laboratory. The plume contained TCE concentrations
ranging from 5 ppb to 300 ppm extending for more than 2 km. An enhanced in situ bioremediation pilot
study started in 1999 to treat the chlorinated solvents contaminated groundwater by injecting the
electron donor Lactate to stimulate in situ reductive dechlorination. A comparison of microbial
communities in the core and groundwater samples was assessed by characterizing total biomass, PLFA
analysis, culturing and community-level physiological profiling (CLPP) using Biolog GN microplates
(Lehman et al. 2004). DGGE analysis indicated that wells with high concentrations of chlorinated
solvents had different microbial communities from wells with minimal concentrations of the
contaminants, and that attached, and the free-living microbes had different functional and composition
profile Additionally, qPCR of the Dehalococcoides sp. 16S rRNA genes provided the most convincing
result in quantifying dechlorinating potential of a community compared to community analysis by
terminal restriction fragment length polymorphism (T-RFLP), and RFLP analysis with clone
sequencing. Erwin et al. (2005) demonstrated the presence of bacteria harboring MMOs and potential
of TCE co-metabolism at TAN from a pristine area using PCR amplification to generate a function
gene fragment library and sequencing. Stable carbon isotope ratios of groundwater samples taken in
2000 confirmed the complete conversion of TCE to ethene, and minimal biodegradation of t-DCE
(Song et al. 2002). Using the PhyloChip for bacterial composition characterization, a decrease in
reductive dechlorinating organisms and an increase in methane-oxidizing microbes capable of aerobic
co-metabolism of TCE was observed. Further studies that would complement the investigation at the
TAN site would be to employ a shotgun proteomics approach as reported by Werner et al. (2009) Their
method allowed for detection of peptides, such as FdhA, TceA, PceA, and HupL that could potentially
be used as bioindicators of chlorinated ethene dehalorespiration.
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